Paleobiological Perspectives on Mesonychia, Archaeoceti, and the Origin of Whales

  • Philip D. Gingerich
Part of the Advances in Vertebrate Paleobiology book series (AIVP, volume 1)


Organisms living today are grouped together taxonomically because they are similar to each other and different from others. How similar organisms are within a group and how different the group is from other groups depends on the broader context of similarities and differences uniting and distinguishing groups. The rank to which a group is assigned depends in part on similarities and differences, but also on what we know about evolutionary history. Extant whales (order Cetacea) have long been known to be mammals because they share with other mammals such basic distinguishing characteristics as endothermy, lactation, large brains, and a high level of activity. Living cetaceans share, in addition, a suite of special characteristics related to life in water that distinguish them from land mammals: These include large body size, a reduced and simplified dentition, an audition-dominated sensory and communication system, a hydrodynamically streamlined body form with a muscular propulsive tail, and of course many ancillary anatomical, behavioral, and physiological differences.


Hind Limb Middle Eocene Late Eocene Terrestrial Mammal Brain Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, C. W. 1906. A descriptive catalogue of the Tertiary Vertebrata of the Fayum, Egypt. British Museum (Natural History), London.Google Scholar
  2. Arnason, U., and Gullberg, A. 1996. Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol. Biol. Evol. 13:407–417.PubMedCrossRefGoogle Scholar
  3. Barnes, L. G., and Mitchell, E. D. 1978. Cetacea, in: V. J. Maglio and H. B. S. Cooke (eds.), Evolution of African Mammals, pp. 582–602. Harvard University Press, Cambridge, MA.Google Scholar
  4. Boule, M. 1903. Le Pachyaena de Vaugirard. Mem. Soc. Geol. Fr. 28:5–16.Google Scholar
  5. Boyden, A., and Gemeroy, D. 1950. The relative position of the Cetacea among the orders of Mammalia as indicated by precipitin tests. Zoolgica 35:145–151.Google Scholar
  6. Breathnach, A. S. 1955. Observations on endocranial casts of recent and fossil cetaceans. J. Anat. 89:533–546.Google Scholar
  7. Dart, R. A. 19923. The brain of the Zeuglodontidae (Cetacea). Proc. Zool. Soc. London 1923:615–654.Google Scholar
  8. Downhower, J. F., and Blumer, L. S. 1988. Calculating just how small a whale can be. Nature 335:675.CrossRefGoogle Scholar
  9. Fordyce, R. E., and Barnes, L. G. 1994. The evolutionary history of whales and dolphins. Annu. Rev. Earth Planet. Sci. 22:419–455.CrossRefGoogle Scholar
  10. Fraas, E. 1904. Neue Zeuglodonten aus dem unteren Mitteleocän vom Mokattam bei Cairo. Geol. Paläontol. Abh. N.F. 6:199–220.Google Scholar
  11. Gidley, J. W. 1913. A recently mounted zeuglodon skeleton in the United States National Museum. Proc. U.S. Nat. Mus. 44:649–654.CrossRefGoogle Scholar
  12. Gingerich, P. D. 1981. Radiation of early Cenozoic Didymoconidae (Condylarthra, Mesonychia) in Asia, with a new genus from the early Eocene of western North America. J. Mammal. 62:526–538.CrossRefGoogle Scholar
  13. Gingerich, P. D. 1990. Prediction of body mass in mammalian species from long bone lengths and diameters. Contrib. Mus. Paleontol. Univ. Michigan 28:79–92.Google Scholar
  14. Gingerich, P. D. 1992. Marine mammals (Cetacea and Sirenia) from the Eocene of Gebel Mokattam and Fayum, Egypt: stratigraphy, age, and paleoenvironments. Univ. Michigan Pap. Paleontol. 30:1–84.Google Scholar
  15. Gingerich, P. D., and Russell, D. E. 1990. Dentition of early Eocene Pakicetus (Mammalia, Cetacea). Contrib. Mus. Paleontol. Univ. Michigan 28(1):1–20.Google Scholar
  16. Gingerich, P. D., and Smith, B. H. 1990. Forelimb and hand of Basilosaurus isis (Mammalia, Cetacea) from the middle Eocene of Egypt (abstract). J. Vertebr. Paleontol. 10A:24.Google Scholar
  17. Gingerich, P. D., and Uhen, M. D. 1998. Likelihood estimation of the time of origin of Cetacea and the time of divergence of Cetacea and Artiodactyla. Palaentologica Electronica.Google Scholar
  18. Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. 1983. Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406.PubMedCrossRefGoogle Scholar
  19. Gingerich, P. D., Smith, B. H., and Simons, E. L. 1990. Hind limbs of Eocene Basilosaurus isis: evidence of feet in whales. Science 249:154–157.PubMedCrossRefGoogle Scholar
  20. Gingerich, P. D., Raza, S. M., Arif, M., Answar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844–847.CrossRefGoogle Scholar
  21. Gingerich, P. D., Arif, M., and Clyde, W. C. 1995. New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda Formation of the Sulaiman Range, Punjab (Pakistan). Contrib. Mus. Paleontol. Univ. Michigan 29(11):291–330.Google Scholar
  22. Goodman, M., Czelusniak, J., and Beeber, J. E. 1985. Phytogeny of primates and other eutherian orders: a cladistic analysis using amino acid and nucleotide sequence data. Cladistics 1:171–185.CrossRefGoogle Scholar
  23. Graur, D., and Higgins, D. G. 1994. Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol. Biol. Evol. 11:357–364.PubMedGoogle Scholar
  24. Gregory, W. K. 1937. The bridge that walks: the story of nature’s most successful design. Nat. Hist. 39:33–48.Google Scholar
  25. Gunnell, G. F., and Gingerich, P. D. 1996. New hapalodectid Hapalorestes lovei (Mammalia, Mesonychia) from the early middle Eocene of northwestern Wyoming. Contrib. Mus. Paleontol. Univ. Michigan 29:413–418.Google Scholar
  26. Irwin, D. M., and Arnason, U. 1994. Cytochrome b gene of marine mammals: phylogeny and evolution. J. Mammal. Evol. 2:37–55.CrossRefGoogle Scholar
  27. Janis, C. M., and Wilhelm, P. B. 1993. Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars. J. Mamm. Evol. 1:103–125.CrossRefGoogle Scholar
  28. Jerison, H. J. 1973. Evolution of the Brain and Intelligence. Academic Press, New York.Google Scholar
  29. Jenson H. J. 1978. Brain and intelligence in whales. Whales and Whaling: Report of the Independent Inquiry Conducted by Sir Sydney Frost, Volume 2, pp. 162-197.Google Scholar
  30. Kellogg, R. 1936. A review of the Archaeoceti. Carnegie Inst. Washington Publ. 482:1–366.Google Scholar
  31. Legendre, S., and Roth, C. 1988. Correlation of carnassial tooth size and body weight in recent carnivores (Mammalia). Hist. Biol. 1:85–98.CrossRefGoogle Scholar
  32. Lucas, F. A. 1900. The pelvic girdle of Zeuglodon, Basilosaurus cetoides (Owen), with notes on the other portions of the skeleton. Proc. U.S. Nat. Mus. 23:237–331.Google Scholar
  33. Luo, Z., and Gingerich, P. D. In press. Transition from terrestrial ungulates to aquatic whales: transformation of the basicranium and evolution of hearing. Univ. Mich. Papers Paleontol..Google Scholar
  34. Maples, B. J. 1949. Two endocranial casts of cetaceans from the Oligocene of New Zealand. Am. J. Sci. 247:462–471.CrossRefGoogle Scholar
  35. Matthew, W. D. 1909. The Carnivore and Insectivore of the Bridger Basin, Middle Eocene. Mem. Am. Mus. Nat. Hist. 9:289–567.Google Scholar
  36. Matthew, W. D. 1915. A revision of the lower Eocene Wasatch and Wind River faunas. Part I—Order Ferae (Carnivore). Suborder Creodonta. Bull. Am. Mus. Nat. Hist. 34:4–103.Google Scholar
  37. McKenna, M. C. 1987. Molecular and morphological analysis of high-level mammalian interrelationships, in: C. Patterson (ed.), Molecules and Morphology in Evolution: Conflict or Compromise? pp. 55–93. Cambridge University Press, London.Google Scholar
  38. Meng, J., Suyin, T., and Schiebout, J. A. 1994. The cranial morphology of an early Eocene didymoconid (Mammalia, Insectivore). J. Vertebr. Palentol. 14:534–551.CrossRefGoogle Scholar
  39. Milinkovitch, M. C. 1995. Molecular phylogeny of cetaceans prompts revision of morphological transformations. Trends Ecol. Evol. 10:328–334.PubMedCrossRefGoogle Scholar
  40. Milinkovitch, M. C., Ortf, C., and Meyer, A. 1993. Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature 361:346–348.PubMedCrossRefGoogle Scholar
  41. Milinkovitch, M. C., Ortf, G., and Meyer, A. 1995. Novel phylogeny of whales revisited but not revised. Mol. Biol. Evol. 12:518–520.PubMedGoogle Scholar
  42. Norris, K. S. 1968. The evolution of acoustic mechanisms in odontocete cetaceans, in: E. T. Drake (ed.), Evolution and Environment, pp. 297–324. Yale University Press, New Haven.Google Scholar
  43. Ohland, D. P., Harley, E. H., and Best, P. B. 1995. Systematics of cetaceans using restriction site mapping of mitochondrial DNA. Mol. Phylogenet. Evol. 4:10–19.PubMedCrossRefGoogle Scholar
  44. ’Leary, M. A., and Rose, K. D. 1995. Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia: Mesonychia). J. Vertebr. Paleontol. 15:401–430.CrossRefGoogle Scholar
  45. Omura, H. 1975. Osteological study of the minke whale from the Antarctic. Sci. Rep. Whales Res. Inst. 27:1–36.Google Scholar
  46. Osborn, H. F. 1910. The Age of Mammals in Europe, Asia, and North America. Macmillan Co., New York.Google Scholar
  47. Osborn, H. F. 1924. Andrewsarchus, giant mesonychid of Mongolia. Am. Mus. Novit. 146:1–5.Google Scholar
  48. Radinsky, L. B. 1976. The brain of Mesonyx, a middle Eocene mesonychid condylarth. Fieldiana Field Mus. Nat. Hist. Geol. Ser. 33:323–337.Google Scholar
  49. Rose, K. D., and O’Leary, M. A. 1995. The manus of Pachyaena gigantea (Mammalia: Mesonychia). J. Vertebr. Paleontol. 15:855–859.CrossRefGoogle Scholar
  50. Russell, D. E. 1964. Les Mammifères Paléocènes d’Europe. Menu Mus. Nat. Hist. Nat. Paris Ser. C 13:1–324.Google Scholar
  51. Sarich, V. M. 1993. Mammalian systematic: twenty-five years among their albumins and transferring in: M. J. Novacek, M. C. McKenna, and F. S. Szalay (eds.). Mammal Phylogeny: Placentals, pp. 103–114. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  52. Scott, W. B. 1886. On some new and little known creodonts. J. Acad. Nat. Sci. Philadelphia 9:155–185.Google Scholar
  53. Scott, W. B. 1913. A History of Land Mammals in the Western Hemisphere. Macmiilan Co., New York.Google Scholar
  54. Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1–350.Google Scholar
  55. Slijper, E. J. 1946. Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verh. K. Ned. Akad. Wet. Afd. Natuurkd. Tweede Reeks 42:1–128.Google Scholar
  56. Slijper, E. J. 1947. Observations on the vertebral column of the domestic animals. Vet. J. 103:376–387.Google Scholar
  57. Szalay, F. S., and Gould, S. J. 1966. Asiatic Mesonychidae (Mammalia, Condylarthra). Bull. Am. Mus. Nat. Hist. 132:127–173.Google Scholar
  58. Thewissen, J. G. M., and Hussain, S. T. 1993. Origin of underwater hearing in whales. Nature 361:444–445.PubMedCrossRefGoogle Scholar
  59. Thewissen, J. G. M., Madar, S. I., and Hussain, S.T. 1996. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 191:1–86.Google Scholar
  60. Ting, S., and Li, C. 1987. The skull of Hapalodectes (?Acreodi, Mammalia), with notes on some Chinese Paleocene mesonychids. Vertebr. PalAsiat. 25:161–186.Google Scholar
  61. Uhen, M. D. 1996. Dorudon atrox (Mammalia, Cetacea): form, function, and phylogenetic relationships of an archaeocedte from the late middle Eocena of Egypt. Ph.D. dissertation, University of Michigan, Ann Arbor, 608 pp.Google Scholar
  62. Van Valen, L. M. 1966. Deltatheridia, a new order of mammals. Bull. Am. Mus. Nat. Hist. 132:1–126.Google Scholar
  63. Van Valen, L. M. 1978. The beginning of the age of mammals. Evol. Theory 4:45–80.Google Scholar
  64. Wang, B. 1976. Late Paleocene mesonychids from Nanxiong Basin, Guangdong. Vertebr. PalAsiat. 14:259–262.Google Scholar
  65. Watson, L., and Ritchie, T. 1981. Sea Guide to Whales of the World. Dutton, New York.Google Scholar
  66. Xue, X., Zhang, Y., Bi, Yue, L., and Chen, D. 1996. The Development and Environmental Changes of the Intermontane Basins in the Eastern Part of Qinling Mountains. Geological Publishing House, Beijing.Google Scholar
  67. Yamada, M. 1954. An account of a rare porpoise Feresa Gray from Japan. Sci. Rep. Whales Res. Inst. 9:59–88.Google Scholar
  68. Zhou, X. 1995. Evolution of Paleocene-Eocene Mesonychidae (Mammalia, Mesonychia). Ph.D. dissertation, University of Michigan, Ann Arbor, 402 pp.Google Scholar
  69. Zhou, X., Sanders, W. J., and Gingerich, P. D. 1992. Functional and behavioral implications of vertebral structure in Pachyaena ossifraga (Mammalia, Mesonychia). Contrib. Mus. Paleontol. Univ. Michigan 28:289–319.Google Scholar
  70. Zhou, X., Zhai, R., Gingerich, P. D., and Chen, L. 1995. Skull of a new mesonychid (Mammalia, Mesonychia) from the late Paleocene of China. J. Vertebr. Palentol. 15:387–400.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Philip D. Gingerich
    • 1
  1. 1.Museum of PaleontologyUniversity of MichiganAnn ArborUSA

Personalised recommendations