Isotopic Approaches to Understanding the Terrestrial-to-Marine Transition of the Earliest Cetaceans

  • Lois J. Roe
  • J. G. M. Thewissen
  • Jay Quade
  • James R. O’Neil
  • Sunil Bajpai
  • Ashok Sahni
  • S. Taseer Hussain
Part of the Advances in Vertebrate Paleobiology book series (AIVP, volume 1)


The fossil record is replete with examples of evolutionary transitions between marine and freshwater environments, in both directions. Perhaps the most striking and best documented example of such a transition is the evolution of cetaceans (whales, dolphins, and porpoises) from the extinct group of terrestrial mammals called mesonychians. This transition, first hypothesized by Van Valen (1966), occurred in the temporally and geographically restricted setting of the Paleogene remnant Tethyan epicontinental sea (Gingerich et al., 1983) and adjacent terrestrial ecosystems. These environments lay in the zone of convergence between the Indian Plate and southern Eurasia during the early stages of the continent-continent collision that ultimately produced the Himalayas.


Carbon Isotope Oxygen Isotope Middle Eocene Oxygen Isotope Composition Tooth Enamel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albright, L. B. 1996. A protocetid cetacean from the Eocene of South Carolina. J. Paleontol. 70(3):519–523.Google Scholar
  2. Allen, P., and Keith, M. L. 1965. Carbon isotope ratios and paleosalinities of Purbeck-Wealden carbonates. Nature 208:1278–1280.CrossRefGoogle Scholar
  3. Ames, A., van Vleet, E. S., and Sackett, W. M. 1996. The use of stable carbon isotope analysis for determining the dietary habits of the Florida manatee, Tricechus manatus latirostris. Mar. Mamm. Sci. 12(4):555–563.CrossRefGoogle Scholar
  4. Andersen, S. H., and Nielsen, E. 1983. Exchange of water between the harbor porpoise, Phocoena phocoena, and the environment. Experientia 39:52–53.PubMedCrossRefGoogle Scholar
  5. Asian, A., and Thewissen, J. G. M. 1996. Preliminary evaluation of Kuldana paleosols and implications for the interpretation of vertebrate fossil assemblages, Kuldana Formation, northern Pakistan, Palaeovertebrata 25(2–4):261–277.Google Scholar
  6. Ayliffe, L. K., and Chivas, A. R. 1990. Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochim. Cosmochim. Acta 54:2603–2609.CrossRefGoogle Scholar
  7. Ayliffe, L. K., Lister, A. M, and Chivas, A. R. 1992. The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99:179–191.CrossRefGoogle Scholar
  8. Ayliffe, L. K., Chivas, A. R., and Leakey, M. G. 1994. The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate. Geochim. Cosmochim. Acta 58(23):5291–5298.CrossRefGoogle Scholar
  9. Barrick, R. E., Fischer, A. G., Kolodny, Y., Luz, B., and Bohaska, D. 1992. Cetacean bone oxygen isotopes as proxies for Miocene ocean composition and glaciation. Palaios 7:521–531.CrossRefGoogle Scholar
  10. Bentley, P. J. 1963. Composition of the urine of the fasting humpback whale (Megaptera nodosa). Comp. Biochem. Physiol. 10:257–259.PubMedCrossRefGoogle Scholar
  11. Bentley, P. J. 1971. Endocrines and Osmoregulation, a Comparative Account of the Regulation of Water and Salt in the Vertebrates. Springer-Verlag, Berlin.Google Scholar
  12. Bryant, J. D., and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59(21):4523–4537.CrossRefGoogle Scholar
  13. Clayton, R. N., and Degens, E. T. 1959. Use of carbon isotope analyses for differentiating fresh-water and marine sediments. Am. Assoc. Petrol. Geol. Bull. 43:890–897.Google Scholar
  14. Craig, H. 1961a. Isotopic variations in meteoric waters. Science 133:1702–1703.PubMedCrossRefGoogle Scholar
  15. Craig, H. 1961b. Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834.PubMedCrossRefGoogle Scholar
  16. Craig, H., and Gordon, L. I. 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in: E. Tongiorigi (ed.), Stable Isotopes in Oceanographic Studies and Paleotemperatures, pp. 9–129. Con-siglio Nazionale delle Ricerche, Pisa.Google Scholar
  17. Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16(4):436–468.CrossRefGoogle Scholar
  18. DeNiro, M. J., and Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42:495–506.CrossRefGoogle Scholar
  19. Epstein, S., and Mayeda, T. 1953. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 4:213–224.CrossRefGoogle Scholar
  20. Fetcher, E. S., Jr., and Fetcher, G. W. 1942. Experiments on the osmotic regulation of dolphins. J. Cell. Comp. Physiol. 19:123–130.CrossRefGoogle Scholar
  21. Fricke, H. C., and O’Neil, J. R. 1996. Inter-and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126:91–99.CrossRefGoogle Scholar
  22. Friedman, I., and O’Neil, J. R. 1977. Compilation of stable isotope fractionation factors of geochemical interest, in: M. Fleischer (ed.), Data of Geochemistry, U.S. Geol. Surv. Prof. Pap. 440-KK.Google Scholar
  23. Fry, B., and Sherr, E. B. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27:13–47.Google Scholar
  24. Gat, J. R. 1981. Isotopic fractionation, in: J. R. Gat and R. Gonfiantini (eds.), Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, pp. 21-33. IAEA Tech. Rep. Ser. No. 210.Google Scholar
  25. Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. 1983. Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406.PubMedCrossRefGoogle Scholar
  26. Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844–847.CrossRefGoogle Scholar
  27. Hobson, K. A., Sease, J. L., Merrick, R. L., and Piatt, J. F. 1997. Investigating trophic relationships of pinnipeds in Alaska and Washington using stable isotopic ratios of nitrogen and carbon. Mar. Mamm. Sci. 13(1):114–132.CrossRefGoogle Scholar
  28. Hui, C. A. 1981. Seawater consumption and water flux in the common dolphin Delphinus delphis. Physiol. Zool. 54:430–440.Google Scholar
  29. Hulbert, R. C., and Petkewich, R. M. 1991. Innominate of a middle Eocene (Lutetian) protocetid whale from Georgia. J. Vertebr. Paleontol. 11(Suppl. to No. 3):36A.Google Scholar
  30. International Atomic Energy Agency. 1986. Environmental Isotope Data No. 8: World Survey of Isotope Concentration in Precipitation (1980–1983). Tech. Rep. Ser. No. 264.Google Scholar
  31. Keegan, W. F., and DeNiro, M. J. 1988. Stable carbon-and nitrogen-isotope ratios of bone collagen used to study coral-reef and terrestrial components of prehistoric Bahamian diet. Am. Antiq. 53(2):320–336.CrossRefGoogle Scholar
  32. Keith, M. L., and Parker, R. H. 1965. Local variation of the 13C and I8O content of mollusk shells and the relatively minor temperature effect in marginal marine environments. Mar. Geol. 3:115–129.CrossRefGoogle Scholar
  33. Keith, M. L., Anderson, G. M., and Eichler, R. 1964. Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochim. Cosmochim. Acta 28:1757–1786.CrossRefGoogle Scholar
  34. Kirschner, L. B. 1991. Water and ions, in: C. L. Presser (ed.). Environmental and Metabolic Animal Physiology: Comparative Physiology, 4th ed., pp. 13–108. Wiley-Liss, New York.Google Scholar
  35. Koch, P. L., Fogel, M. L., and Tuross, N. 1994. Tracing the diets of fossil animals using stable isotopes, in: K. Lajtha and R. H. Michener (eds.), Stable Isotopes in Ecology and Environmental Science, pp. 63–92. Blackwell, Oxford.Google Scholar
  36. Kohn, M. J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 60(23):4811–4829.CrossRefGoogle Scholar
  37. Kohn, M. J., Schoeninger, M. J., and Valley, J. W. 1996. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60(20):3889–3896.CrossRefGoogle Scholar
  38. Kolodny, Y., and Luz, B. 1991. Oxygen isotopes in phosphates of fossil fish; Devonian to Recent, in: H. P. Taylor, Jr., J. R. O’Neil, and I. R. Kaplan (eds.), Stable Isotope Geochemistry; a Tribute to Samuel Epstein, pp. 105–119. Geochemical Society Special Publication No. 3, University Park, PA.Google Scholar
  39. Kolodny, Y, Luz, B., and Navon, O. 1983. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game. Earth Planet. Sci. Lett. 64:398–404.CrossRefGoogle Scholar
  40. Kumar, K., and Sahni, A. 1986. Remingtonocetus harudiensis, new combination, a middle Eocene archaeocete (Mammalia, Cetacea) from western Kutch, India. J. Vertebr. Paleontol. 6:326–349.CrossRefGoogle Scholar
  41. Lee-Thorp, J. A., and van der Merwe, N. J. 1987. Carbon isotope analysis of fossil bone apatite. S. Afr. J. Sci. 83:712–715.Google Scholar
  42. Lee-Thorp, J. A., and van der Merwe, N. J. 1991. Aspects of the chemistry of modern and fossil biological apatites. J. Archaeol. Sci. 18:343–354.CrossRefGoogle Scholar
  43. Little, E. A., and Schoeninger, M. J. 1995. The Late Woodland diet on Nantucket Island and the problem of maize in coastal New England. Am. Antiq. 60(2):351–368.CrossRefGoogle Scholar
  44. Longinelli, A., and Nuti, A. 1973a. Revised phosphate-water isotopic temperature scale. Earth Planet. Sci. Lett. 19:373–376.CrossRefGoogle Scholar
  45. Longinelli, A., and Nuti, A. 1973b. Oxygen isotope measurements of phosphate from fish teeth and bones. Earth Planet. Sci. Lett. 20:337–340.CrossRefGoogle Scholar
  46. Luz, B., and Kolodny, Y. 1985. Oxygen isotope variations in phosphate of biogenic apatites, IV. Mammal teeth and bones. Earth Planet. Sci. Lett. 75:29–36.CrossRefGoogle Scholar
  47. Luz, B., and Kolodny, Y. 1989. Oxygen isotope variation in bone phosphate. Appl. Geochem. 4:317–323.CrossRefGoogle Scholar
  48. Luz, B., Kolodny, Y, and Horowitz, M. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim. Cosmochim. Acta 48:1689–1693.CrossRefGoogle Scholar
  49. Luz, B., Cormie, A. B., and Schwarcz, H. P. 1990. Oxygen isotope variations in phosphate of deer bones. Geochim. Cosmochim. Acta 54:1723–1728.CrossRefGoogle Scholar
  50. McCrea, J. M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18:849–857.CrossRefGoogle Scholar
  51. Messenger, S. L. 1994. Phylogenetic relationships of palatanistoid river dolphins (Odontoceti, Cetacea): assessing the significance of fossil taxa. Proc. San Diego Soc. Nat. Hist. 29:125–133.Google Scholar
  52. Muizon, C. de. 1994. Are the squalodonts related to the platanistoids? Proc. San Diego Soc. Nat. Hist. 29:135–146.Google Scholar
  53. Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., DePaolo, D. J., and Hare, P. E. 1986. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochim. Cosmochim. Acta 50:1941–1949.CrossRefGoogle Scholar
  54. O’Neil, J. R., Roe, L. J., Reinhard, E., and Blake, R. E. 1994. A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Isr. J. Earth Sci. 43:203–212.Google Scholar
  55. Peterson, B. J., and Fry, B. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18:293–320.CrossRefGoogle Scholar
  56. Quade, J., Cerling, T. E., Barry, J. C., Morgan, M. E., Pilbeam, D. R., Chivas, A. R., Lee-Thorp, J. A., and van der Merwe, N. J. 1992. A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chem. Geol. (Isot. Geosci.) 94:183–192.CrossRefGoogle Scholar
  57. Rau, G. H., Sweeney, R. E., and Kaplan, I. R., 1982. Plankton 13C:12C ratio changes with latitude: differences between the northern and southern oceans. Deep Sea Res. 29(8A):1035–1039.Google Scholar
  58. Ridgway, S. H. 1972. Homeostasis in the aquatic environment, in: S. H. Ridgway (ed.), Mammals of the Sea, Biology and Medicine, pp. 590–747. Thomas, Springfield, IL.Google Scholar
  59. Sahni, A., and Mishra, V. P. 1975. Lower Tertiary vertebrates from western Kutch. Monogr. Palaeontol. Soc. India 3:1–48.Google Scholar
  60. Schmidt-Nielsen, K. 1964. Desert Animals, Physiological Problems of Heat and Water. Clarendon Press, Oxford.Google Scholar
  61. Schmidt-Nielsen, K. 1997. Animal Physiology: Adaptation and Environment, 5th ed. Cambridge University Press, London.Google Scholar
  62. Schoeninger, M. J., and DeNiro, M. J. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48:625–639.CrossRefGoogle Scholar
  63. Shemesh, A. 1990. Crystallinity and diagenesis of sedimentary apatites. Geochim. Cosmochim. Acta 54:2433–2438.CrossRefGoogle Scholar
  64. Smith, R. J., Hobson, K. A., Koopman, H. N., and Lavigne, D. M. 1996. Distinguishing between populations of fresh-and salt-water harbour seals (Phoca vitulina) using stable isotope ratios and fatty acid profiles. Can. J. Fish. Aquat. Sci. 53:272–279.CrossRefGoogle Scholar
  65. Sokolov, V. E., Mashcherskii, I. G., Feoktistova, N. Y, and Klishin, V. O. 1994. Water balance of the Black Sea bottle-nosed dolphin. Dokl. Akad. Nauk 335:396–398.PubMedGoogle Scholar
  66. Telfer, N., Cornell, L. H., and Prescott, J. H. 1970. Do dolphins drink water? J. Am. Vet. Med. Assoc. 157:555–558.PubMedGoogle Scholar
  67. Thewissen, J. G. M., and Hussain, S. T. 1993. Origin of underwater hearing in whales. Nature 361:444–445.PubMedCrossRefGoogle Scholar
  68. Thewissen, J. G. M., and Hussain, S. T. 1998. Systematic review of the Pakicetidae, early and middle Eocene Cetacea (Mammalia) from Pakistan and India. Bull. Carnegie Mus. Nat. Hist. 34:220–238.Google Scholar
  69. Thewissen, J. G. M., Hussain, S. T., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212.PubMedCrossRefGoogle Scholar
  70. Thewissen, J. G. M, Madar, S. I., and Hussain, S. T. 1996a. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 191:1–86.Google Scholar
  71. Thewissen, J. G. M, Roe, L. J., O’Neil, J. R., Hussain, S. T., Sahni, A., and Bajpai, S. 1996b. Evolution of cetacean osmoregulation. Nature 381:379–380.CrossRefGoogle Scholar
  72. Van Valen, L. 1966. Deltatheridia, a new order of mammals. Bull. Am. Mus. Nat. Hist. 132:1–126.Google Scholar
  73. Wells, N. A. 1983. Transient streams in sand-poor redbeds: early-middle Eocene Kuldana Formation of northern Pakistan. Spec. Publ. Int. Assoc. Sedimentol. 6:393–403.Google Scholar
  74. Wells, N. A. 1984. Marine and continental sedimentation in the early Cenozoic Kohat Basin and adjacent northwestern Indo-Pakistan. Ph.D. dissertation. University of Michigan, 465 pp.Google Scholar
  75. West, R. M., and Lukacs, J. R. 1979. Geology and vertebrate-fossil localities, Tertiary continental rocks, Kala Chitta Hills, Attock District, Pakistan. Milwaukee Public Mus. Contrib. Biol. Geol. 26:1–20.Google Scholar
  76. Whelan, J. F. 1987. Stable isotope hydrology, in: T. K. Kyser, (ed.), Stable Isotope Geochemistry of Low Temperature Fluids. Mineral. Assoc. Can. Short Course 13129-161.Google Scholar
  77. Yoshida, N., and Miyazaki, N. 1991. Oxygen isotope correlation of cetacean bone phosphate with environmental water. J. Geophys. Res. 96(C1):815–820.CrossRefGoogle Scholar
  78. Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography 9(2):358–387.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Lois J. Roe
    • 1
  • J. G. M. Thewissen
    • 2
  • Jay Quade
    • 3
  • James R. O’Neil
    • 4
  • Sunil Bajpai
    • 5
  • Ashok Sahni
    • 6
  • S. Taseer Hussain
    • 7
  1. 1.Division of Ecosystem SciencesUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Department of AnatomyNortheastern Ohio Universities College of MedicineRootstownUSA
  3. 3.Desert Laboratory and Department of GeosciencesUniversity of ArizonaTucsonUSA
  4. 4.Department of Geological SciencesUniversity of MichiganAnn ArborUSA
  5. 5.Department of Earth SciencesUniversity of RoorkeeRoorkeeIndia
  6. 6.Centre for Advanced Studies in GeologyPanjab UniversityChandigarhIndia
  7. 7.Department of AnatomyHoward University College of MedicineUSA

Personalised recommendations