Advertisement

New, Hydrotalcite-Type Catalytic Materials: Preparation of the Series Mg4−xZnxAl2(OH)12[B3O3(OH)4]2 · YH2O (x = 0−4)

  • Alak Bhattacharyya
  • Daniel B. Hall

Abstract

In the past decade there has been a renewed interest in the use of clay minerals as catalysts and catalyst supports. In general, clays break down into two broad groups: cationic clays, which nature prefers, and anionic clays. Anionic clays, which are the topic of our study, are rare in nature but relatively simple and inexpensive to prepare in the laboratory. Naturally occurring hydrotalcite, Mg6Al2(OH)16CO3•4H2O, is an example of an anionic clay.1

Keywords

High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Micrograph Double Hydroxide Layer Reflux Condenser Pillared Clay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richie, W. T. “Anionic Clay Minerals” Chemtech, January, 1986.Google Scholar
  2. 2.
    Van Olphen, H. “An Introduction to Clay Colloid Chemistry”, Wiley: New York, 1977.Google Scholar
  3. 3.
    Frondel, C. Am. Mineral. 26:295 (1941)Google Scholar
  4. 4.
    Feitknecht, W. Helv. Chim. Acta, 25:131 (1942).CrossRefGoogle Scholar
  5. 5.
    Feitknecht, W.; Fischer, G. Helv. Chim. Acta, 18:555 (1935).CrossRefGoogle Scholar
  6. 6.
    Miyata, S. Clays Clay Miner. 31:305 (1983).CrossRefGoogle Scholar
  7. 7.
    Miyata, S. Clays Clay Miner. 23:269 (1975).CrossRefGoogle Scholar
  8. 8.
    Miyata, S., Okada A. Clays Clay Miner. 25:14 (1977).CrossRefGoogle Scholar
  9. 9.
    Miyata, S.; Horose, T. Clays Clay Miner. 26:441 (1978).CrossRefGoogle Scholar
  10. 10.
    Drezdzon, M. A. Inorg. Chem. 27:4628 (1988).CrossRefGoogle Scholar
  11. 11.
    Miyata, S.; Kumura, T. Chem. Lett. 843 (1973).Google Scholar
  12. 12.
    Herman, R. G.; Klier, K.; Simmons, G. W.; Finn, B. P.; Bulko, J. B.; Kobylinski, T. P. J. Catal., 56:407 (1979).CrossRefGoogle Scholar
  13. 13.
    Busetto, C; Del Piero, G.; Manara, G.; Trifiro, F.; Vaccari, A. J. Catal. 85:260 (1984).CrossRefGoogle Scholar
  14. 14.
    Klier, K. In “Catalysis of Organic Reactions”; Moser, W. R., ED; Marcel Decker: New York, N.Y., 1981, pp. 195–218.Google Scholar
  15. 15.
    Br Patent 1,380,949 (to BASF, 1975).Google Scholar
  16. 16.
    Bhattacharyya, A. A.; Woltermann, G. M.; Yoo, J. S.; Karch, J. A.; Cormier, W. E. Ind. Eng. Chem. Res. 27: 1356 (1988). Bhattacharyya, A.; Foral, M. J.; Reagan, W. J.; U.S. Patent 5, 426, 083, 1995.CrossRefGoogle Scholar
  17. 17.
    Richie, W. T. U.S. Patent 4, 458, 026, 1984.Google Scholar
  18. 18.
    Bhattacharyya, A.; Hall, D. B. Inorg. Chem. 31:3869 (1992).CrossRefGoogle Scholar
  19. 19.
    Bhattacharyya, A. U.S. Patent 5, 246, 899, 1993.Google Scholar
  20. 20.
    Bhattacharyya, A.; Hall, D. B.; Barnes, T. J. Appl. Clay Science, 10:57 (1995).CrossRefGoogle Scholar
  21. 21.
    Farmer, J. B. in “Adv. Inorg. Chem. Radiochem.” Emeleus, H. J. and Sharp, A. G. Eds; Vol. 25, pp. 187–237, Academic Press, New York, 1982.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Alak Bhattacharyya
    • 1
  • Daniel B. Hall
    • 1
  1. 1.Chemical Sector, Amoco Research CenterAmoco CorporationNapervilleUSA

Personalised recommendations