Skip to main content

A New Class of Gallium Arsenide Transistor: Realization Through a Molecular Designed Insulator

  • Chapter
Materials Synthesis and Characterization
  • 196 Accesses

Abstract

Materials chemistry is a rapidly maturing area of chemical research,* and there is ever growing opportunities for chemists to make significant contributions to area of electronic materials. However, any research program should follow two criteria. First, the area to be tackled should involve a real (not perceived) problem in materials science. Finding new syntheses for commercially available materials, while intellectually of interest, has little practical purpose. Second, it is counter productive to investigate issues that are clearly engineering problems. Chemists are experts at molecular manipulation, and it is in this arena that unique solutions will be found. In this regard we have set out to create a chemical solution to a problem that has plagued the electronics industry for approximately 30 years: the lack of insulating gate transistor device for gallium arsenide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Sze, Physics of Semiconductor Devices, (Wiley, New York, ed. 2, 1981).

    Google Scholar 

  2. P. Seidenberg, The New Opto-electronics Ball Game: The policy struggle between the US and Japan for the competitive edg, (IEEE Press, New York, 1992).

    Google Scholar 

  3. J. E. Lilienfeld, US Patent 1, 745, 175 (1930)

    Google Scholar 

  4. O. Heil, UK Patent 439, 457 (1935).

    Google Scholar 

  5. D. L. Lüe, Solid State Electron. 21, 1199 (1978).

    Article  Google Scholar 

  6. T. Waho and F. Yanagawa, IEEE Electron Device Lett., 9, 548 (1988).

    Article  CAS  Google Scholar 

  7. M. Hirano, et al., IEEE Trans. Electron Devices, 36, 2217 (1989).

    Article  Google Scholar 

  8. See for example, A. Bousetta and W. S. Truscott, J. Appl. Phys. 68, 5709 (1990).

    Article  CAS  Google Scholar 

  9. D. Mano, et al., Phys. Rev. B 39, 735 (1989).

    Google Scholar 

  10. F. C. Farrow, P. W. Sullivan, G. M. Williams, G. R. Jones, C. Cameron, J. Vac. Sci.Technol. 19, 415 (1981).

    Article  CAS  Google Scholar 

  11. W. E. Spicer, P. W. Chye, P. R. Skeath, G. Y. Su, I. Lindau, J. Vac. Sci. Technol., 16, 1422 (1979).

    Article  CAS  Google Scholar 

  12. J. L. Freeouf and J. M. Woodall, Appl. Phys. Lett. 39, 7272 (1981).

    Article  Google Scholar 

  13. See, for example, G. P. Schwartz, Thin Solid Films 103, 3 (1983).

    Article  CAS  Google Scholar 

  14. S.D. Offsey, J.M. Woodall, A.C. Warren, P.D. Kirchner, T.I. Chappell, and G.D. Pettit, Appl. Phy. Letts. 48, 475 (1986).

    Article  CAS  Google Scholar 

  15. S.M. Beck and J.E. Wessel, Appl. Phys. Lett., 50, 149 (1987).

    Article  CAS  Google Scholar 

  16. Z. Liliental-Weber, C.W. Wilmsen, K.M. Geib, P.D. Kirchner, J.M. Baker and J.M. Woodall J. Appl. Phys., 67, 1863 (1990).

    Article  CAS  Google Scholar 

  17. R. A. Logan, B. Schwartz, and W.J. Sundburg, J. Electrochem. Soc, 120, 1385 (1973).

    Article  CAS  Google Scholar 

  18. H. Hasegawa, K.E. Forward, and H.L. Hartnagel, Appl. Phys. Lett., 26, 567 (1975).

    Article  CAS  Google Scholar 

  19. M. A. Hoffbauer, J.B. Cross, and U.M. Bermudez, Appl. Phys. Lett., 57, 2193 (1990).

    Article  CAS  Google Scholar 

  20. E. Yablonovitch, C.J. Sandroff, R. Bhat, and T. Gmitter, Appl. Phy. Lett., 51, 439 (1987).

    Article  CAS  Google Scholar 

  21. A. N. Maclnnes, M. B. Power, and A. R. Barron, Chem. Mater. 4, 11 (1992).

    Article  Google Scholar 

  22. A. N. Maclnnes, M. B. Power, and A. R. Barron, Chem. Mater. 5, 1344 (1993).

    Article  Google Scholar 

  23. A. N. Maclnnes, M. B. Power, A. R. Barron, P. P. Jenkins, and A. F. Hepp, Appl. Phy. Lett. 62, 711 (1993).

    Article  Google Scholar 

  24. M. Tabib-Azar, S. Kang, A. N. Maclnnes, M. B. Power, A. R. Barron, P. P. Jenkins, and A. F. Hepp, Appl. Phys. Lett., 63, 625 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barron, A.R. (1997). A New Class of Gallium Arsenide Transistor: Realization Through a Molecular Designed Insulator. In: Perry, D.L. (eds) Materials Synthesis and Characterization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0145-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0145-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0147-7

  • Online ISBN: 978-1-4899-0145-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics