A New Class of Gallium Arsenide Transistor: Realization Through a Molecular Designed Insulator

  • Andrew R. Barron


Materials chemistry is a rapidly maturing area of chemical research,* and there is ever growing opportunities for chemists to make significant contributions to area of electronic materials. However, any research program should follow two criteria. First, the area to be tackled should involve a real (not perceived) problem in materials science. Finding new syntheses for commercially available materials, while intellectually of interest, has little practical purpose. Second, it is counter productive to investigate issues that are clearly engineering problems. Chemists are experts at molecular manipulation, and it is in this arena that unique solutions will be found. In this regard we have set out to create a chemical solution to a problem that has plagued the electronics industry for approximately 30 years: the lack of insulating gate transistor device for gallium arsenide.


Field Effect Transistor Gallium Arsenide GaAs Surface Surface Recombination Velocity MOSFET Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Sze, Physics of Semiconductor Devices, (Wiley, New York, ed. 2, 1981).Google Scholar
  2. 2.
    P. Seidenberg, The New Opto-electronics Ball Game: The policy struggle between the US and Japan for the competitive edg, (IEEE Press, New York, 1992).Google Scholar
  3. 3.
    J. E. Lilienfeld, US Patent 1, 745, 175 (1930)Google Scholar
  4. 4.
    O. Heil, UK Patent 439, 457 (1935).Google Scholar
  5. 5.
    D. L. Lüe, Solid State Electron. 21, 1199 (1978).CrossRefGoogle Scholar
  6. 6.
    T. Waho and F. Yanagawa, IEEE Electron Device Lett., 9, 548 (1988).CrossRefGoogle Scholar
  7. 7.
    M. Hirano, et al., IEEE Trans. Electron Devices, 36, 2217 (1989).CrossRefGoogle Scholar
  8. 8.
    See for example, A. Bousetta and W. S. Truscott, J. Appl. Phys. 68, 5709 (1990).CrossRefGoogle Scholar
  9. D. Mano, et al., Phys. Rev. B 39, 735 (1989).Google Scholar
  10. F. C. Farrow, P. W. Sullivan, G. M. Williams, G. R. Jones, C. Cameron, J. Vac. Sci.Technol. 19, 415 (1981).CrossRefGoogle Scholar
  11. 9.
    W. E. Spicer, P. W. Chye, P. R. Skeath, G. Y. Su, I. Lindau, J. Vac. Sci. Technol., 16, 1422 (1979).CrossRefGoogle Scholar
  12. J. L. Freeouf and J. M. Woodall, Appl. Phys. Lett. 39, 7272 (1981).CrossRefGoogle Scholar
  13. 10.
    See, for example, G. P. Schwartz, Thin Solid Films 103, 3 (1983).CrossRefGoogle Scholar
  14. 11(a).
    S.D. Offsey, J.M. Woodall, A.C. Warren, P.D. Kirchner, T.I. Chappell, and G.D. Pettit, Appl. Phy. Letts. 48, 475 (1986).CrossRefGoogle Scholar
  15. (b).
    S.M. Beck and J.E. Wessel, Appl. Phys. Lett., 50, 149 (1987).CrossRefGoogle Scholar
  16. (c).
    Z. Liliental-Weber, C.W. Wilmsen, K.M. Geib, P.D. Kirchner, J.M. Baker and J.M. Woodall J. Appl. Phys., 67, 1863 (1990).CrossRefGoogle Scholar
  17. 12.
    R. A. Logan, B. Schwartz, and W.J. Sundburg, J. Electrochem. Soc, 120, 1385 (1973).CrossRefGoogle Scholar
  18. 13.
    H. Hasegawa, K.E. Forward, and H.L. Hartnagel, Appl. Phys. Lett., 26, 567 (1975).CrossRefGoogle Scholar
  19. 14.
    M. A. Hoffbauer, J.B. Cross, and U.M. Bermudez, Appl. Phys. Lett., 57, 2193 (1990).CrossRefGoogle Scholar
  20. 15.
    E. Yablonovitch, C.J. Sandroff, R. Bhat, and T. Gmitter, Appl. Phy. Lett., 51, 439 (1987).CrossRefGoogle Scholar
  21. 16.
    A. N. Maclnnes, M. B. Power, and A. R. Barron, Chem. Mater. 4, 11 (1992).CrossRefGoogle Scholar
  22. 17.
    A. N. Maclnnes, M. B. Power, and A. R. Barron, Chem. Mater. 5, 1344 (1993).CrossRefGoogle Scholar
  23. 18.
    A. N. Maclnnes, M. B. Power, A. R. Barron, P. P. Jenkins, and A. F. Hepp, Appl. Phy. Lett. 62, 711 (1993).CrossRefGoogle Scholar
  24. 19.
    M. Tabib-Azar, S. Kang, A. N. Maclnnes, M. B. Power, A. R. Barron, P. P. Jenkins, and A. F. Hepp, Appl. Phys. Lett., 63, 625 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Andrew R. Barron
    • 1
  1. 1.Department of ChemistryRice UniversityHoustonUSA

Personalised recommendations