Skip to main content
  • 394 Accesses

Abstract

Ultrasonic transducers are used both as transmitters to project a beam of sound into a material and as receivers to convert received sound into electrical energy. Chapter 8 models the sound beam generated by bulk wave transducers acting as transmitters. In later chapters we show that the properties of both transmitted and received sound beams appear in an LTI model in the form of diffraction correction terms. Thus explicit diffraction correction expressions are obtained here for both focused and unfocused transducers in many common testing configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Rubinowicz. Miyamoto-Wolf diffraction wave, in Progress in Optics, vol. 4 (E. Wolf, Ed.) (Wiley, New York, 1965), pp. 201–40.

    Google Scholar 

  2. K. Miyamoto and E. Wolf, J. Opt. Soc. Am. 52 (1962) 615.

    Article  MathSciNet  Google Scholar 

  3. K. Miyamoto and E. Wolf, J. Opt. Soc. Am. 52 (1962) 626.

    Article  MathSciNet  Google Scholar 

  4. E. W Marchand and E. Wolf, J. Opt. Soc. Am. 52 (1962) 761.

    Article  MathSciNet  Google Scholar 

  5. H. T. O’Neil, J. Acoust Soc. Am. 21 (1949) 516.

    Article  Google Scholar 

  6. F. Coulouvrat, J. Acoust. Soc. Am. 94 (1993) 1663.

    Article  Google Scholar 

  7. J. J. Stamnes, Waves in Focal Regions (Adam Hilger, Boston, 1986).

    MATH  Google Scholar 

  8. U. Schlengermann, Acustica 30 (1974) 291.

    Google Scholar 

  9. B. B. Baker and E. T. Copson, Mathematical Theory of Huygen’s Principle, 2d ed. (Oxford Univ. Press, Fair Lawn, NJ, 1950).

    Google Scholar 

  10. D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction (Artech House, Boston, 1990).

    Google Scholar 

  11. V. Cerveny and R. Ravindra, Theory of Seismic Head Waves (Univ. of Toronto Press, Toronto, 1971).

    Google Scholar 

  12. G. L. James, Geometrical Theory of Diffraction for Electromagnetic Waves, revised 3rd edition (Peter Peregrinus, London, 1986).

    Google Scholar 

  13. B. Y. Gel’chinskiy, An expression for the spreading function, in Problems in the Dynamic Theory of Propagation of Seismic Waves, vol. 5 (G. I. Petrashen, ed.) (Leningrad Univ. Press, Leningrad, 1961), pp. 47–53 (in Russian).

    Google Scholar 

  14. T. P. Lerch, Ultrasonic transducer characterization and transducer beam modeling for applications in nondestructive evaluation, Ph.D. diss. Iowa State University, 1996.

    Google Scholar 

  15. R. B. Thompson, T. A. Gray, J. H. Rose, V. J. Kogan, and E. F. Lopes, J. Acoust. Soc. Am. 82 (1987) 1818.

    Article  Google Scholar 

  16. B. P. Newberry and R. B. Thompson, J. Acoust. Soc. Am. 85 (1989) 2290.

    Article  Google Scholar 

  17. P. M. Morse and K. Uno Ingard, Theoretical Acoustics (Princeton Univ. Press, Princeton, NJ, 1968).

    Google Scholar 

  18. D. J. Vezzetti, J. Acoust. Soc. Am. 78 (1985) 1103.

    Article  Google Scholar 

  19. L. W. Schmerr and A. Sedov, J. Acoust. Soc. Am. 86 (1989) 1988.

    Article  Google Scholar 

  20. G. R. Harris, J. Acoust. Soc. Am. 70 (1981) 10.

    Article  MATH  Google Scholar 

  21. D. A. Hutchins and G. Hayward, Radiated fields of ultrasonic transducers, in Physical Acoustics: Ultrasonic Measurement Methods (R. N. Thurston and A. D. Pierce, eds.) (Academic, New York, 1990), pp. 1–80.

    Google Scholar 

  22. R. B. Thompson and T. A. Gray, J. Acoust. Soc. Am. 74 (1983) 1279 [see also Erratum, J. Acoust. Soc. Am. 75 (1984) 1645.

    Article  Google Scholar 

Suggested Reading

  • A. O. Williams, J. Acoust Soc. Am. 23 (1951) 1.

    Article  Google Scholar 

  • M. Greenspan, J. Acoust. Soc. Am. 65 (1979) 608.

    Article  MathSciNet  MATH  Google Scholar 

  • H. D. Mair, L. Bresse, and D. A. Hutchins, J. Acoust. Soc. Am. 84 (1988) 1517.

    Article  Google Scholar 

  • J. C. Lockwood and J. G. Willette, J. Acoust. Soc. Am. 53 (1973) 735.

    Article  Google Scholar 

  • J. N. Tjotta and S. Tjotta, J. Acoust. Soc. Am. 71 (1982) 824.

    Article  MathSciNet  MATH  Google Scholar 

  • D. A. Hutchins, H. D. Mair, P. A. Puhach, and J. Osei, J. Acoust. Soc. Am. 80 (1986) 1.

    Article  Google Scholar 

  • M. F Hamilton, J. Acoust. Soc. Am. 92 (1992) 527.

    Article  Google Scholar 

  • L. W. Schmerr, T. P. Lerch, and A. Sedov, A focussed transducer/scatterer model for ultrasonic reference standards, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1993) 12A, 925.

    Chapter  Google Scholar 

  • U. Schlengermann, Mat. Eval. 38 (1980) 73.

    Google Scholar 

  • W. G. R. Gibson, R. S. C. Cobbold, and F. S. Foster, J. Acoust. Soc. Am. 94 (1993) 1923.

    Article  Google Scholar 

  • R. B. Thompson, T. A. Gray, J. H. Rose, V. G. Kogan, and E. F. Lopes, J. Acoust. Soc. Am. 82 (1987) 1818.

    Article  Google Scholar 

  • A. Ilan and J. P. Weight, J. Acoust. Soc. Am. 88 (1990) 1142.

    Article  Google Scholar 

  • L. F. Bresse and D. A. Hutchins, J. Acoust. Soc. Am. 86 (1989) 810.

    Article  Google Scholar 

  • K. Gniadek, and J. Petkiewicz, Applications of optical methods in the diffraction theory of elastic waves, in Progress in Optics, vol. 9 (E. Wolf, ed.) (American Elsevier, New York, 1971) pp. 283–310.

    Google Scholar 

  • J. A. Archer-Hall and D. Gee, NDT Int’l 13 (1980) 95.

    Article  Google Scholar 

  • R. B. Thompson and T. A. Gray, Range of applicability of inversion algorithms, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum New York, 1982), pp. 1, 233-49.

    Chapter  Google Scholar 

  • R. B. Thompson and T. A. Gray, Analytical diffraction corrections to ultrasonic scattering measurements, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum New York, 1983), 2A, pp. 567–86.

    Chapter  Google Scholar 

  • R. C. Olivers, L. Bosselaar, and P. R. Filmore, J. Acoust. Soc. Am. 68 (1980) 80.

    Article  Google Scholar 

  • F. Amin, T. A. Gray, and F. J. Margetan, A new method to estimate the effective focal length and radius of ultrasonic focussed probes, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum New York, 1991), 10A, pp. 861–65.

    Google Scholar 

  • Q. C. Guo and J. D. Achenbach, Ultrasonics 33 (1996) 449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmerr, L.W. (1998). Ultrasonic Transducer Radiation. In: Fundamentals of Ultrasonic Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0142-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0142-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0144-6

  • Online ISBN: 978-1-4899-0142-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics