Advertisement

Ultrasonic Transducer Radiation

  • Lester W. SchmerrJr.

Abstract

Ultrasonic transducers are used both as transmitters to project a beam of sound into a material and as receivers to convert received sound into electrical energy. Chapter 8 models the sound beam generated by bulk wave transducers acting as transmitters. In later chapters we show that the properties of both transmitted and received sound beams appear in an LTI model in the form of diffraction correction terms. Thus explicit diffraction correction expressions are obtained here for both focused and unfocused transducers in many common testing configurations.

Keywords

Main Beam Edge Element Edge Wave Paraxial Approximation Stationary Phase Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Rubinowicz. Miyamoto-Wolf diffraction wave, in Progress in Optics, vol. 4 (E. Wolf, Ed.) (Wiley, New York, 1965), pp. 201–40.Google Scholar
  2. 2.
    K. Miyamoto and E. Wolf, J. Opt. Soc. Am. 52 (1962) 615.MathSciNetCrossRefGoogle Scholar
  3. 3.
    K. Miyamoto and E. Wolf, J. Opt. Soc. Am. 52 (1962) 626.MathSciNetCrossRefGoogle Scholar
  4. 4.
    E. W Marchand and E. Wolf, J. Opt. Soc. Am. 52 (1962) 761.MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. T. O’Neil, J. Acoust Soc. Am. 21 (1949) 516.CrossRefGoogle Scholar
  6. 6.
    F. Coulouvrat, J. Acoust. Soc. Am. 94 (1993) 1663.CrossRefGoogle Scholar
  7. 7.
    J. J. Stamnes, Waves in Focal Regions (Adam Hilger, Boston, 1986).MATHGoogle Scholar
  8. 8.
    U. Schlengermann, Acustica 30 (1974) 291.Google Scholar
  9. 9.
    B. B. Baker and E. T. Copson, Mathematical Theory of Huygen’s Principle, 2d ed. (Oxford Univ. Press, Fair Lawn, NJ, 1950).Google Scholar
  10. 10.
    D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction (Artech House, Boston, 1990).Google Scholar
  11. 11.
    V. Cerveny and R. Ravindra, Theory of Seismic Head Waves (Univ. of Toronto Press, Toronto, 1971).Google Scholar
  12. 12.
    G. L. James, Geometrical Theory of Diffraction for Electromagnetic Waves, revised 3rd edition (Peter Peregrinus, London, 1986).Google Scholar
  13. 13.
    B. Y. Gel’chinskiy, An expression for the spreading function, in Problems in the Dynamic Theory of Propagation of Seismic Waves, vol. 5 (G. I. Petrashen, ed.) (Leningrad Univ. Press, Leningrad, 1961), pp. 47–53 (in Russian).Google Scholar
  14. 14.
    T. P. Lerch, Ultrasonic transducer characterization and transducer beam modeling for applications in nondestructive evaluation, Ph.D. diss. Iowa State University, 1996.Google Scholar
  15. 15.
    R. B. Thompson, T. A. Gray, J. H. Rose, V. J. Kogan, and E. F. Lopes, J. Acoust. Soc. Am. 82 (1987) 1818.CrossRefGoogle Scholar
  16. 16.
    B. P. Newberry and R. B. Thompson, J. Acoust. Soc. Am. 85 (1989) 2290.CrossRefGoogle Scholar
  17. 17.
    P. M. Morse and K. Uno Ingard, Theoretical Acoustics (Princeton Univ. Press, Princeton, NJ, 1968).Google Scholar
  18. 18.
    D. J. Vezzetti, J. Acoust. Soc. Am. 78 (1985) 1103.CrossRefGoogle Scholar
  19. 19.
    L. W. Schmerr and A. Sedov, J. Acoust. Soc. Am. 86 (1989) 1988.CrossRefGoogle Scholar
  20. 20.
    G. R. Harris, J. Acoust. Soc. Am. 70 (1981) 10.MATHCrossRefGoogle Scholar
  21. 21.
    D. A. Hutchins and G. Hayward, Radiated fields of ultrasonic transducers, in Physical Acoustics: Ultrasonic Measurement Methods (R. N. Thurston and A. D. Pierce, eds.) (Academic, New York, 1990), pp. 1–80.Google Scholar
  22. 22.
    R. B. Thompson and T. A. Gray, J. Acoust. Soc. Am. 74 (1983) 1279 [see also Erratum, J. Acoust. Soc. Am. 75 (1984) 1645.CrossRefGoogle Scholar

Suggested Reading

  1. A. O. Williams, J. Acoust Soc. Am. 23 (1951) 1.CrossRefGoogle Scholar
  2. M. Greenspan, J. Acoust. Soc. Am. 65 (1979) 608.MathSciNetMATHCrossRefGoogle Scholar
  3. H. D. Mair, L. Bresse, and D. A. Hutchins, J. Acoust. Soc. Am. 84 (1988) 1517.CrossRefGoogle Scholar
  4. J. C. Lockwood and J. G. Willette, J. Acoust. Soc. Am. 53 (1973) 735.CrossRefGoogle Scholar
  5. J. N. Tjotta and S. Tjotta, J. Acoust. Soc. Am. 71 (1982) 824.MathSciNetMATHCrossRefGoogle Scholar
  6. D. A. Hutchins, H. D. Mair, P. A. Puhach, and J. Osei, J. Acoust. Soc. Am. 80 (1986) 1.CrossRefGoogle Scholar
  7. M. F Hamilton, J. Acoust. Soc. Am. 92 (1992) 527.CrossRefGoogle Scholar
  8. L. W. Schmerr, T. P. Lerch, and A. Sedov, A focussed transducer/scatterer model for ultrasonic reference standards, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1993) 12A, 925.CrossRefGoogle Scholar
  9. U. Schlengermann, Mat. Eval. 38 (1980) 73.Google Scholar
  10. W. G. R. Gibson, R. S. C. Cobbold, and F. S. Foster, J. Acoust. Soc. Am. 94 (1993) 1923.CrossRefGoogle Scholar
  11. R. B. Thompson, T. A. Gray, J. H. Rose, V. G. Kogan, and E. F. Lopes, J. Acoust. Soc. Am. 82 (1987) 1818.CrossRefGoogle Scholar
  12. A. Ilan and J. P. Weight, J. Acoust. Soc. Am. 88 (1990) 1142.CrossRefGoogle Scholar
  13. L. F. Bresse and D. A. Hutchins, J. Acoust. Soc. Am. 86 (1989) 810.CrossRefGoogle Scholar
  14. K. Gniadek, and J. Petkiewicz, Applications of optical methods in the diffraction theory of elastic waves, in Progress in Optics, vol. 9 (E. Wolf, ed.) (American Elsevier, New York, 1971) pp. 283–310.Google Scholar
  15. J. A. Archer-Hall and D. Gee, NDT Int’l 13 (1980) 95.CrossRefGoogle Scholar
  16. R. B. Thompson and T. A. Gray, Range of applicability of inversion algorithms, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum New York, 1982), pp. 1, 233-49.CrossRefGoogle Scholar
  17. R. B. Thompson and T. A. Gray, Analytical diffraction corrections to ultrasonic scattering measurements, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum New York, 1983), 2A, pp. 567–86.CrossRefGoogle Scholar
  18. R. C. Olivers, L. Bosselaar, and P. R. Filmore, J. Acoust. Soc. Am. 68 (1980) 80.CrossRefGoogle Scholar
  19. F. Amin, T. A. Gray, and F. J. Margetan, A new method to estimate the effective focal length and radius of ultrasonic focussed probes, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum New York, 1991), 10A, pp. 861–65.Google Scholar
  20. Q. C. Guo and J. D. Achenbach, Ultrasonics 33 (1996) 449.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Lester W. SchmerrJr.
    • 1
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations