Advertisement

Adhesive Molecules at Luminal Surface and at Intercellular Junctions of the Endothelium in the Regulation of Leukocyte Transendothelial Traffic

  • Aldo Del Maschio
  • Adriana Zanetti
  • Paraskevi Andriopoulou
  • Maria Grazia Lampugnani
  • Elisabetta Dejana
Part of the NATO ASI Series book series (NSSA, volume 294)

Abstract

Circulating leukocytes migrate from the vessels and enter tissues under both normal and pathological situations. Whereas monocytes, lymphocytes and natural killer cells exhibit a significant spontaneous migration through resting endothelium neutrophils and eosinophils require chemotactic stimuli and/or endothelial cell activation. Cell passage across endothelial monolayers involves leukocyte adherence to the endothelium, crawling on the endothelial surface and transmigration, most probably through endothelial clefts.

Keywords

Leukocyte Adhesion Vascular Cell Adhesion Molecule Intercellular Junction Endothelial Monolayer High Endothelial Venule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gallatin, W.M., Weissman I.L., Butcher, E.C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature, 304:30–34, 1983.PubMedCrossRefGoogle Scholar
  2. 2.
    Hogg, N. Roll, roll, roll your leukocyte gently down the vein. Immunol. Today, 13:113–115, 1992.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith, C.W., Kishimoto, T.K., Abbass O., et al. Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro. J. Clin. Invest., 87:609–618,1991.PubMedCrossRefGoogle Scholar
  4. 4.
    Schleiffenbaum, B., Spertini, O., and Tedder, T.F.: Soluble L-selectin is present in human plasma at high levels and retains functional activity. J. Cell. Biol., 119:229–238, 1992.PubMedCrossRefGoogle Scholar
  5. 5.
    Stenberg, P.E., McEver, R.P., Shuman, M.A., et al. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J. Cell. Biol., 191:880–886, 1985.CrossRefGoogle Scholar
  6. 6.
    McEver, R.P., Beckstead, J.H., Moore, K.L., et al. GMP-140, a platelet a-granule membrane protein, is also synthesized by vascular endothelial cells and is located in Weibel-Palade bodies. J. Clin. Invest., 84:92–99, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Bevilacqua, M.P. and Nelson, R.M. Selectins. J. Clin. Invest., 94:379–387, 1993.CrossRefGoogle Scholar
  8. 8.
    Weiler, A., Isenmann, S., and Vestweber, D. Cloning of the mouse endothelial selectins: Expression of both E-and P-selectin is inducible by tumor necrosis factor-α. J. Biol. Chem., 267:15176–15183, 1992.Google Scholar
  9. 9.
    Green, S.H., Setiadi, H., McEver, R.P., et al. The cytoplasmic domain of P-selectin contains a sorting determinant that mediates rapid degradation in lysosomes. J. Cell. Biol., 124:435–448, 1994.PubMedCrossRefGoogle Scholar
  10. 10.
    Palabrica, T.B., Lobb, A., Furie, B.C., et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature, 359:848–851, 1992.PubMedCrossRefGoogle Scholar
  11. 11.
    Lorant, D.E., Topham, M.K., Whatley, R.E., et al. Inflammatory roles of P-selectin. J. Clin. Invest., 92:559–570, 1993.PubMedCrossRefGoogle Scholar
  12. 12.
    Bevilacqua, M.P., Pober, J.S., Mendrick, D.L., et al. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl. Acad. Sci. USA, 84:9238–9242, 1987.PubMedCrossRefGoogle Scholar
  13. 13.
    Smith, C.H., Barker, J.N., Morris, R.W., et al. Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J. Immunol., 151:3274–3282, 1993.PubMedGoogle Scholar
  14. 14.
    Lasky, L.E., Singer, M.S., Dowbenko, U., et al. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell, 69:927–938, 1992.PubMedCrossRefGoogle Scholar
  15. 15.
    Baumhueter, S., Singer, M.S., Henzel, W., et al. Binding of L-selectin to the vascular sialomucin CD34. Science, 262:436–438, 1993.CrossRefGoogle Scholar
  16. 16.
    Rosen, S. L-selectin and its biological ligands. Histochemistry, 100:185–191, 1993.PubMedCrossRefGoogle Scholar
  17. 17.
    Norton, J., Sloane, J.P., Delia, D., et al. Reciprocal of CD34 and cell adhesion ELAM-1 on vascular endothelium in acute cutaneous graft-versus-host disease. J. Pathol., 170:173–177, 1993.PubMedCrossRefGoogle Scholar
  18. 18.
    Streeter, P.R., Berg, E.L., Rouse, B.T.N., et al. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature, 331:41–46, 1988.PubMedCrossRefGoogle Scholar
  19. 19.
    Berlin, C., Berg, E.L., Briskin, M.J., et al. α4β7 integrin mediates lymphocyte binding to mucosal vascular addressin MAdCAM-1. Cell, 74: 185–195, 1993.PubMedCrossRefGoogle Scholar
  20. 20.
    Nakache, M., Berg, E.L., Streeter, P.R., et al. The mucosal vascular addressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes. Nature, 337:179–181, 1989.PubMedCrossRefGoogle Scholar
  21. 21.
    Sako, O., Chang, X.J., Barone, K.M., et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell, 75:1179–1186, 1993.PubMedCrossRefGoogle Scholar
  22. 22.
    Moore, K.L., Stults, N.L., Diaz, S., et al. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J. Cell. Biol., 118:445–456, 1992.PubMedCrossRefGoogle Scholar
  23. 23.
    Picker, L.J., Warnock, R.A., Burns, R.R., et al. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell, 66:921–933, 1991.PubMedCrossRefGoogle Scholar
  24. 24.
    Berg, E.L., Yoshino, T., Rott, L.S., et al. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J. Exp. Med., 174:1461–1466, 1991.PubMedCrossRefGoogle Scholar
  25. 25.
    Walchek B., Watts, G., and Jutila, M.A. Bovine g/d T cells bind E-selectin via a novel glycoprotein receptor: Characterization of a lymphocyte/E-selectin interaction in an animal model. J. Exp. Med., 178:853–863, 1993.CrossRefGoogle Scholar
  26. 26.
    Ohmori, K., Takada, A., Yaneda, T., et al. Differentiation-dependent expression of sialyl stage-specific embryonic antigen-1 and I-antigens on human lymphoid cells and its implications for carbohydrate-mediated adhesion to vascular endothelium. Blood, 81:101–111, 1993.PubMedGoogle Scholar
  27. 27.
    Lub, M., van Kooyk, Y., and Figdor, C.G. Ins and outs of LFA-1. Immunol. Today, 16:479–483, 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Dustin, M.L. and Springer, T.A. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J. Cell. Biol., 107:321–331, 1988.PubMedCrossRefGoogle Scholar
  29. 29.
    Springer, T.A. Adhesion receptors of the immune system. Nature, 346:425–434, 1990.PubMedCrossRefGoogle Scholar
  30. 30.
    Graham, I.L., Gresham H.D., and Brown F.J. An immobile subset of plasma membrane CD11b/CD18 (Mac-1) is involved in phagocytosis of targets recognized by multiple receptors. J. Immunol., 142:2352–2358, 1989.PubMedGoogle Scholar
  31. 31.
    Altieri, D.C., Plescia, J., and Plow, E. The structural motif glycine 190-valine 202 of the fibrinogen g chain interacts with CD11b/CD18 integrin (aMb2, Mac-1) and promote leukocyte adhesion. J. Biol. Chem., 268:1847–1853, 1993.PubMedGoogle Scholar
  32. 32.
    Rieu, P., Ueda, T., Haruta I., et al. The A-domain of β2 integrin CR3 (CD11b/CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF. J. Cell. Biol., 127:2081–2091, 1994.PubMedCrossRefGoogle Scholar
  33. 33.
    Miller, L.J., Schwarting, A., Springer, T.A. Regulated expression of the Mac-1, LFA-1, p150,95 glycoprotein family during leukocyte differentiation. J. Immunol., 157:2891–2900, 1986.Google Scholar
  34. 34.
    Myones, B.L., Dalzell J.G., Hogg, N., et al. Neutrophil and monocyte cell surface p150,95 has a iC3b-receptor (CR4) activity resembling CR3. J. Clin. Invest., 82:640–651, 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    Cobbold, S., Holmes, M., and Willett, B. The immunology of companion animals: reagents and therapeutic strategies with potential veterinary and human clinical applications. Immunol. Today, 15:347–353, 1994.PubMedCrossRefGoogle Scholar
  36. 36.
    Hemler, M.E. Adhesive protein receptors on hematopoietic cells. Immunol. Today, 9:109–113, 1988.PubMedCrossRefGoogle Scholar
  37. 37.
    Tiisala, S., Hakkarainen, M., Majuri, M.-L., et al. Down-regulation of monocytic VLA-4 leads to a decreased adhesion to VCAM-1. FEBS, 332:19–23, 1993.CrossRefGoogle Scholar
  38. 38.
    Elices, M.J., Osborn, L., Takada Y., et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell, 60:577–584, 1996.CrossRefGoogle Scholar
  39. 39.
    Issekutz, T.B., Miyasaka M., Issekutz, A.C. Rat blood neutrophils express very late antigen 4 and it mediates migration to arthritic joint and dermal inflammation. J. Exp. Med., 183:2175–2184, 1996.PubMedCrossRefGoogle Scholar
  40. 40.
    Imhof, B.A., Buiz, P., Hesse, B., et al. EA-1, a novel adhesion molecule involved in the homing of progenitor T lymphocytes to the thymus. J. Cell. Biol., 114:1069–1078, 1991.PubMedCrossRefGoogle Scholar
  41. 41.
    Sonnenberg, A., Linders, C.J.T., Modderman, P.W., et al. Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that α6β1 but not α6β4 functions as a major receptor for fragment E8. J. Cell. Biol., 110:2145–2155, 1990.PubMedCrossRefGoogle Scholar
  42. 42.
    Chan, B.M.C., Elices, M.J., Murphy, E., et al. Adhesion to vascular cell adhesion molecule 1 and fibronectin. Comparison of α4βI (VLA-4) and α4β7 an the human B cell line JY. J. Biol. Chem., 267:8366–8370, 1992.PubMedGoogle Scholar
  43. 43.
    Cepek, K.L., Shaw, S.K., Parker, C.M., et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature, 372:190–193, 1994.PubMedCrossRefGoogle Scholar
  44. 44.
    Dustin, M.L., Rothlein, A., Bhan, A.K., et al. Induction by IL-1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-I) J. Immunol., 137:245–254, 1986.PubMedGoogle Scholar
  45. 45.
    Diamond, M.S., Staunton, D.E., Marlin, S.D., et al. Binding of the integrin Mac-1 (CD11/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell, 65:961–971, 1991.PubMedCrossRefGoogle Scholar
  46. 46.
    Staunton, D.E., Dustin, M.L., Erickson, H.P., et al. The arrangement of the immunoglobulin-like domain of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell, 61:243–254, 1990.PubMedCrossRefGoogle Scholar
  47. 47.
    Pigott, R., Dillon, L.P., Hemingway, I.H., et al. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem. Biophys. Res. Commun., 187:584–589, 1992.PubMedCrossRefGoogle Scholar
  48. 48.
    Nortamo, P., Li, R., Renkonen R., et al. The expression of human intercellular adhesion molecule-2 is refractory to inflammatory cytokines. Eur. J. Immunol, 21:2629–2632, 1991.PubMedCrossRefGoogle Scholar
  49. 49.
    de Fougerolles, R.R., and Springer, T.A. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J. Exp. Med., 175:185–190, 1992.PubMedCrossRefGoogle Scholar
  50. 50.
    Osborn, L., Hession, C., Tizard, A., et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell, 59:1203–1211, 1989.PubMedCrossRefGoogle Scholar
  51. 51.
    DeLisser, H.M., Newman, P.J., and Albelda, S.M. Molecular and functional aspects of PECAM-1/CD31. Immunol. Today, 15:490–495, 1994.PubMedCrossRefGoogle Scholar
  52. 52.
    Piali, L., Hammel, P., Uherek, C., et al. CD31/PECAM-1 is a ligand for αvβ3 integrin involved in adhesion of leukocytes to endothelium. J. Cell. Biol., 130:451–460, 1995.PubMedCrossRefGoogle Scholar
  53. 53.
    Muller, W.R., Weigl, S.A., Deng, H., et al. PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med., 178:449–468, 1993.PubMedCrossRefGoogle Scholar
  54. 54.
    Marchesi, V.T. and Florey, H.W. Electron micro graphic observations on the emigration of leukocytes. Q. J. Exp. Physiol., 45:343–348, 1968.Google Scholar
  55. 55.
    Brenner, B.M., Troy J.L., and Ballermann, B.J. Endothelium dependent vascular responses. Mediators and mechanisms. J. Clin. Invest., 84:1373–1378, 1989.PubMedCrossRefGoogle Scholar
  56. 56.
    Baggiolini, M., Dewald, B., Moser, B. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. In: Advances in Immunology, Dixon, F.J., (ed.), vol. 55, pp. 97–148, Academic Press, San Diego, 1994.Google Scholar
  57. 57.
    Smith, C.W., Rothlien, A., Hughes, B.J., et al. Recognition of an endothelial determinant for CD18-dependent human neutrophil adherence and transendothelial migration. J. Clin. Invest., 82:1746–1756, 1989.CrossRefGoogle Scholar
  58. 58.
    Hakkert, B.C., Kuijpers, T.W., Leeuwenberg, J.F.M., et al. Neutrophil and monocyte adherence to and migration across monolayers of cytokine-activated endothelial cells: the contribution of CD18, ELAM-1, and VLA-4. Blood, 78:2721–2726, 1991.PubMedGoogle Scholar
  59. 59.
    Luscinskas, F.W., Cybulsky, M.I., Kiely J.M., et al. Cytokine activated human endothelial monolayers support enhanced neutrophil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-1. J. Immunol., 146:1617–1625, 1991.PubMedGoogle Scholar
  60. 60.
    Chuluyan, H.E. and Issekutz, A.C. VLA-4 integrin can mediate CD11/CD18-independent transendothelial migration of human monocytes. J. Clin. Invest., 92:2768–2777, 1994.CrossRefGoogle Scholar
  61. 61.
    Vaporciyan, A.A., DeLisser, H.M., and Yan, H.C. Involvement of platelet endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science, 262:1580–1582, 1993.PubMedCrossRefGoogle Scholar
  62. 62.
    Tanaka, Y., Albelda, S.M., Horgan, K.J., et al. CD31 expressed on distinctive T cell subsets is a preferential amplifier of β1 integrin-mediated adhesion. J. Exp. Med., 176:245–253, 1992.PubMedCrossRefGoogle Scholar
  63. 63.
    Furie, M.B., Naprstek, B.L., and Silverstein, S.C. Migration of neutrophils across monolayers of cultured microvascular endothelial cells. An in vitro model of leukocyte extravasation. J. Cell. Sci., 88:161–175, 1987.PubMedGoogle Scholar
  64. 64.
    Moser, R., Schleiffenbaum, B., Groscurth P., et al. Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J. Clin. Invest., 83:444–455, 1989.PubMedCrossRefGoogle Scholar
  65. 65.
    Shaw, J.O. Leukocytes in chemotactic-fragment-induced lung inflammation: Vascular emigration and alveolar surface migration. Am. J. Pathol., 101:283–302, 1980.PubMedGoogle Scholar
  66. 66.
    Lehr, H.A., and Arfors, K.E. Mechanisms of tissue damage by leukocytes. Curr. Opin. Hematol., 1:92–99, 1994.PubMedGoogle Scholar
  67. 67.
    Huber, A.R. and Weiss S.J. Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J. Clin. Invest., 83:1122–1136, 1989.PubMedCrossRefGoogle Scholar
  68. 68.
    Kuijpers, T.W., Hoogerwerf, M., and Roos, D. Neutrophil migration across monolayers of resting or cytokine-activated endothelial cells. J. Immunol, 148:72–77, 1992.PubMedGoogle Scholar
  69. 69.
    Dejana, E., Corada, M., Lampugnani, M.G. Endothelial cell-to-cell junctions. FASEB J., 9:910–918, 1995.PubMedGoogle Scholar
  70. 70.
    Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251:1451–1455, 1991.PubMedCrossRefGoogle Scholar
  71. 71.
    Kemler, A. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet., 9:317–321, 1993.PubMedCrossRefGoogle Scholar
  72. 72.
    Lampugnani, M.G., Resnati, M., Raiteri, M., et al. A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J. Cell. Biol., 118:1511–1522, 1992.PubMedCrossRefGoogle Scholar
  73. 73.
    Lampugnani, M.G., Corada M., Caveda, L., et al. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, β-catenin and α-catenin with vascular endothelial cadherin (VE-cadherin). J. Cell. Biol., 129:203–217, 1995.PubMedCrossRefGoogle Scholar
  74. 74.
    Rabiet, M.J., Plantier, J.L., Rival, V., et al. Thrombin-induced increase in endothelial permeability is associated with changes in cell to cell junction organization. Arterioscler. Thromb. Vasc. Biol., 16:488–496, 1996.PubMedCrossRefGoogle Scholar
  75. 75.
    Del Maschio, A., Zanetti, A., Corada M., et al. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J. Cell. Biol., 135:497–510, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Aldo Del Maschio
    • 1
  • Adriana Zanetti
    • 1
  • Paraskevi Andriopoulou
    • 2
  • Maria Grazia Lampugnani
    • 1
  • Elisabetta Dejana
    • 1
  1. 1.Laboratory of Vascular BiologyInstituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
  2. 2.Laboratory of PharmacologyUniversity of PatrasPatrasGreece

Personalised recommendations