Advertisement

Genetic Factors in Atherosclerosis

From Humans to Mice and Back Again
  • Hooman Allayee
  • Brad Aouizerat
  • Richard Davis
  • Thomas A. Drake
  • Jennifer Gu
  • Aldons J. Lusis
  • Dietrich Machleder
  • Shahab Mehdizadeh
  • Margarete Mehrabian
  • Jian-Hua Qiao
  • Karen Rooke
  • Carrie Welch
Part of the NATO ASI Series book series (NSSA, volume 294)

Abstract

Atherosclerosis, the cause of coronary artery disease (CAD) and stroke, is in reality not one disease but many different diseases, each with a similar endpoint (vascular lesions) but differing in genetic and environmental contributions. In genetic terms, atherosclerosis is very “heterogeneous.” Within particular populations, genetic differences appear to be of primary importance in determining who will develop atherosclerosis, and its consequent clinical sequelae, and who will not. Between populations, particularly between those populations consuming different levels of dietary fat, environmental influences predominate.

Keywords

Complex Trait Inbred Strain Familial Hypercholesterolemia Familial Hypercholesterolemia Congenic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. Mouse Genome Database. Mouse Genome Informatics Project, The Jackson Laboratory, Bar Harbor, Maine. World Wide Web.(URL:http://www.informatics.jax.org), 1995.
  2. Anonymous. GDB(TM) Human Genome Data Base. Johns Hopkins University, Baltimore, Maryland. World Wide Web. (URL:http://gdbwww.gdb.org/db5.61browser/docs/topq/html), 1996.Google Scholar
  3. Artzt, K., Barlow, D., Dove, W.F., Lindahl, J., Klein, J., Lyon, M.F., and Silver. L.M. Maps on mouse chromosome 17: First report. Mamm. Genome, 1:5–29, 1991.CrossRefGoogle Scholar
  4. Breslow, J.L. Insights into lipoprotein metabolism from studies in transgenic mice. Ann. Rev. Physiol., 56:797–810, 1994.CrossRefGoogle Scholar
  5. Breslow, J.L. Mouse models of atherosclerosis. Science, 272:685–688, 1996.PubMedCrossRefGoogle Scholar
  6. Bu, X., Warden, C.H., Xia, Y-R., DeMeester, C., Puppione, D.L., Teruya, S., Lokensgard, B., Daneshmand, S., Brown, J., Gray, R., Rotter, J.I., and Lusis, A.J. Linkage analysis of the genetic determinants of high density lipoprotein concentrations and composition: evidence for involvement of the apolipoprotein A-II and cholesteryl ester transfer protein loci. Hum. Genet., 93:639–648, 1994.PubMedCrossRefGoogle Scholar
  7. Collins, A., Lawrence, S., and Shields, D.C. Algorithms for a local database. Ann. Hum. Genet., 56:223-232. (URL:http://cedar.genetics.soton.ac.uk/public.html/gene.html, 1992.Google Scholar
  8. Collins, F. Positional cloning moves from perditional to traditional. Nat. Genet., 9:347–350, 1995.PubMedCrossRefGoogle Scholar
  9. Copeman, J.B., Cucca, F., Hearne, H.M., Cornell, R.J., Reed, P.W., Ronningen, K.S., Undlien, D.F., Nistico, L., Buzzetti, R., Tosi, R., Pociot, F., Nerup, J., Cornelis, F., Barnett, A.H., Bain, S.C., and Todd, J.A. Linkage disequilibrium mapping of a type 1 diabetes susceptibility gene (IDDM7) to chromosome 2q31-q33. Nat. Genet., 9:80–85, 1995.PubMedCrossRefGoogle Scholar
  10. Davies, J.L., Kawaguchi, Y., Bennett, S.T., Copeman, J.B., Cordell, H.J., Pritchard, L.F., Reed, P.W., Gough, S.C.L., Jenkins, S.C., Palmer, S.M., Balfour, K.M., Rowe, B.R., Farrall, M., Barnett, AH., Bain, S.C., and Todd J.A. A genome-wide search for human type 1 diabetes susceptibility genes. Nature, 371:130–136, 1994.PubMedCrossRefGoogle Scholar
  11. Dietrich, W.F., Lander, E.S., Smith, J.S., Moser, A.R., Gould, K.A., Luongo, C., Borenstein, N., and Dove, W. Genetic identification of Mom-1, major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell, 75:631–639, 1993.PubMedCrossRefGoogle Scholar
  12. Doolittle, M.H., LeBoeuf, R.C., Warden, C.H., Bee, L.M., and Lusis, A.J. A polymorphism affecting apolipoprotein A-II translational efficiency determines high density lipoprotein size and composition. J. Biol. Chem., 265:16380–16388, 1990.PubMedGoogle Scholar
  13. Fisler, J.S., Warden, C.H., Pace, M.J., and Lusis, A.J. BSB: Anew mouse model of multigenic obesity. Obesity Res., 1:271–280, 1993.CrossRefGoogle Scholar
  14. Goldstein, J.L. and Brown, M.S. The low density lipoprotein receptor: A key for unlocking a multifactorial disease. In: Etiology of Human Disease at the DNA Level. Lindsten, J. and Petterson, U., eds. pp. 129–140, Raven Press, N.Y., 1991.Google Scholar
  15. Goldstein, J.L., Hobbs, H.H., and Brown, M.S. Familial hypercholesterolemia. In: The Metabolic and Molecular Bases of Inherited Disease. Scriver, C.R., Beaudet, AL., Sly, W.S., and Valle, D., editors, pp. 1981–2030, McGraw-Hill, Inc., New York, 1995.Google Scholar
  16. Hedrick, C.C. and Lusis, A.J. Apolipoprotein A-II: A protein in search of a function. Can. J. Cardiol., 19:453–459, 1994.Google Scholar
  17. Hobbs, H.H., Leitersdorf, E., Leffert, C.C., Cryer, D.R., Brown, M.S., and Goldstein, J.L. Evidence for a dominant gene that suppresses hypercholesterolemia in a family with defective low density lipoprotein receptors. J. Clin. Invest, 84:656–664, 1989.PubMedCrossRefGoogle Scholar
  18. Hua, X., Wu, J., Goldstein, J.L., Brown, M.S., and Hobbs, H.H. Structure of human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17q11.2 and 22q13. Genomics, 25:667–673, 1995.PubMedCrossRefGoogle Scholar
  19. Keating, M.T. and Sanguinetti, M.C. Molecular genetic insights into cardiovascular disease. Science, 272:681–685, 1996.PubMedCrossRefGoogle Scholar
  20. Kleyn, P.W., Fan, W., Kovats, S.G., Lee, J.J., Pvledo, J.C., Wu, Y., Berkemeier, L.R., Misumi, D.J., Holmgren, L., Charlat, O., Woolf, E.A., Tayber, O., Brody, T., Shu, P., Hawkins, F., Kennedy, B., Baldini, L., Ebling, C., Alperin, G.D., Deeds I., Lakey, N.D., Colpepper, J., Chen, H., Glücksmann-Kuis, M.A., Carlson, G.A., Duyk, G.M., and Moore, K.J. Identification and characterization of the mouse obesity gene tubby: A member of a novel gene family. Cell, 85:281–290, 1996.PubMedCrossRefGoogle Scholar
  21. Kruglyak, L. and Lander, E.S. High resolution genetic mapping of complex traits. Am. J. Hum. Genet., 56:1212–1223, 1995.PubMedGoogle Scholar
  22. Ivandic, B.T., Qiao, J-H., Machleder, D., Liao, F., Drake, T.A., and Lusis, A.J. A locus on chromosome 7 determines myocardial cell necrosis and calcification (dystrophic cardiac calcinosis) in mice. Proc. Nat. Acad. Sci. USA, 93:5483–5488, 1996.PubMedCrossRefGoogle Scholar
  23. Lander, E.S. and Schork, N.J. Genetic dissection of complex traits. Science, 265:2037–2048, 1994.PubMedCrossRefGoogle Scholar
  24. Lifton, R.P. Molecular genetics of human blood pressure variation. Science, 272:676–680, 1996.PubMedCrossRefGoogle Scholar
  25. Lusis, A.J. Genetic factors in atherosclerosis: the candidate gene approach. J. Lipid Res., 29:397–429, 1988.PubMedGoogle Scholar
  26. Mehrabian, M., Demer, L.L., and Lusis, A.J. Differential accumulation of the intimai monocyte-macrophages relative to lipoproteins and lipofuscin correspond to hemodynamic forces on cardiac valves in mice. Arterioscl. Thromb., 11:947–957, 1991.PubMedCrossRefGoogle Scholar
  27. Mehrabian, M., Qiao, J.-H., Hyman, R., Ruddle, D., Laughton, C., and Lusis, A.J. Influence of the apoA-II gene locus on HDL levels and fatty streak development in mice. Arterioscl. Thromb., 13:1–10, 1993.PubMedCrossRefGoogle Scholar
  28. Noben-Trauth, K., Naggert, J.K., North, M.A., and Nishina, P.M. A candidate gene for the mouse mutation tubby. Nature, 380:534–538, 1996.PubMedCrossRefGoogle Scholar
  29. Paterniti, J.R., Brown, W.V., Ginsberg, H.N., and Artzt, K. Combined lipase deficiency (cld): A lethal mutation on chromosome 17 of the mouse. Science, 221:167–169, 1983.PubMedCrossRefGoogle Scholar
  30. Purcell-Huynh, D.A., Weinreb, A., Castellani, L.W., Mehrabian, M., Doolittle, M.H., and Lusis, A.J. Genetic factors in lipoprotein metabolism: Analysis of a genetic cross between mouse strains NZB/BINJ and SM/J using a complete linkage map approach. J. Clin. Invest., 96:1845–1858, 1995.PubMedCrossRefGoogle Scholar
  31. Qiao, J.-H., Welch, C.L., Xie, P.-Z., Fishbein, M.C., and Lusis, A.J. Involvement of the tyrosinase gene in deposition of cardiac lipofuscin in mice: Association with aortic fatty streak development. J. Clin. Invest., 92:2386–2393,1993.PubMedCrossRefGoogle Scholar
  32. Qiao, J-H., Xie, P-X., Fishbein, M.C., Kreuzer, J., Drake, T., Demer, L.L., and Lusis, A.J. Pathology of atheromatous lesions in inbred and genetically engineered mice: Genetic determination of arterial calcification. Arterioscl. Thromb., 14:1480–1497, 1994.PubMedCrossRefGoogle Scholar
  33. Reue, K. and Doolittle, M.H. Naturally occurring mutations in mice affecting lipid transport and metabolism. J. Lipid Res., 37:1387–1405, 1996.PubMedGoogle Scholar
  34. Shih, D.M., Gu, L., Hama, S., Xia, Y-R., Navab, M., Fogelman, A.M., and Lusis, A.J. Genetic-dietary regulation of serum paraoxanase expression and its role in atherogenesis in a mouse model. J. Clin. Invest., 96:1630–1639, 1996.CrossRefGoogle Scholar
  35. Shih, D.M., Welch, C., and Lusis, A.J. New insights into atherosclerosis from studies with mouse models. Molec. Med. Today, 1:364–372, 1995.CrossRefGoogle Scholar
  36. Silver, L.M., Nadeau, J.H., and Goodfellow, P.N., eds. Mouse chromosome committee reports. Mamm. Genome, 5 (Suppl.).Google Scholar
  37. Silver, L.M. Mouse Genetics: Concepts and Applications. Oxford University Press, New York.Google Scholar
  38. Smithies, O. and Maeda, N. Gene targeting approaches to complex genetic diseases: Atherosclerosis and essential hypertension. Proc. Natl. Acad. Sci. USA, 92:5266–5272, 1995.PubMedCrossRefGoogle Scholar
  39. Wang, X., Sato, R., Brown, M.S., and Goldstein, J.L. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell, 77:53–62, 1994.PubMedCrossRefGoogle Scholar
  40. Warden, C.H., Daluiski, A., Bu, X., Purcell-Huynh, DA., DeMeester, C., Shieh, B.-H., Puppoine, D.L., Gray, R.M., Reaven, G.M., Chen, Y.-D. I., Rotter J.I., and Lusis, A.J. The apolipoprotein All gene determines plasma apolipoprotein AII levels and free fatty acid levels in both humans and mice. Proc. Nat. Acad. Sci. USA, 90:10886–10890, 1993a.PubMedCrossRefGoogle Scholar
  41. Warden, C.H., Fisler, J.S., Shoemaker, S.M., Wen, P-Z., Svenson, K.L., Pace, M.J., and Lusis, A.J. Identification of four chromosomal loci determining obesity in a multifactorial mouse model. J. Clin. Invest., 95:1545–1552, 1995.PubMedCrossRefGoogle Scholar
  42. Warden, C.H., Hedrick, C.C., Qiao, J.-H., Castellani, L.W., and Lusis, A.J. Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II. Science, 261:469–472, 1993b.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hooman Allayee
    • 1
  • Brad Aouizerat
    • 1
  • Richard Davis
    • 1
  • Thomas A. Drake
    • 2
  • Jennifer Gu
    • 1
    • 2
  • Aldons J. Lusis
    • 1
  • Dietrich Machleder
    • 1
  • Shahab Mehdizadeh
    • 1
  • Margarete Mehrabian
    • 1
  • Jian-Hua Qiao
    • 1
  • Karen Rooke
    • 1
  • Carrie Welch
    • 1
  1. 1.Department of Medicine and Department of Microbiology and Molecular GeneticsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Pathology and Laboratory MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations