Stealth™ Liposomes for the Targeting of Drugs in Cancer Therapy

  • Theresa M. Allen
  • Daniel Lopes de Menezes
  • Christian B. Hansen
  • Elaine H. Moase
Part of the NATO ASI Series book series (NSSA, volume 300)


Anticancer drugs have a variety of dose-limiting side effects as a consequence of their distribution to normal, sensitive tissues as well as to cancerous tissues. The goal for the targeting of liposomal drugs in cancer therapy is to increase the localization of the anticancer drugs to the diseased tissue, while at the same time decreasing their localization to normal tissue, i.e. to increase the selective toxicity of the drugs. Put another way, by the entrapment of anticancer drugs in liposomes we are aiming to increase the efficacy of the drugs, while reducing their side effects (toxicity), resulting in an increase in the therapeutic indices for the drugs.


Anticancer Drug Free Drug Circulation Time Liposomal Doxorubicin Mononuclear Phagocyte System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abra, R.M., and C.A., Hunt, 1981, Liposome disposition in vivo. III. Dose and vesicle-size effects. Biochim. Biophys. Acta, 666:493.PubMedCrossRefGoogle Scholar
  2. Ahmad, I., and Allen, T.M., 1992, Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. 52:4817.PubMedGoogle Scholar
  3. Ahmad, I., Longenecker, M., Samuel, J., and Allen, T.M., 1993, Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res. 53:1484.PubMedGoogle Scholar
  4. Allen, T.M., 1994, The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv. Drug Del Rev. 13:285.CrossRefGoogle Scholar
  5. Allen, T.M., Agrawal, A.K., Ahmad, I., Hansen C.B., and Zalipsky, S., 1994, Antibody-mediated targeting of long-circulating (Stealth®) liposomes. J. Liposome Res. 4:1.CrossRefGoogle Scholar
  6. Allen, T.M., Ahmad, I., Lopes de Menezes, D.I., and Moase, E.H., 1995, Immunoliposome-mediated targeting of anti-cancer drugs in vivo. Biochem. Soc. Trans. 23:1073.PubMedGoogle Scholar
  7. Allen, T.M., Brandeis, E., Hansen, C.B., Kao. G.Y., and Zalipsky, S., 1995, A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim. Biophys. Acta, 1237:99.PubMedCrossRefGoogle Scholar
  8. Allen, T.M. and Hansen, C.B., 1991, Pharmacokinetics of Stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta, 1068:133.PubMedCrossRefGoogle Scholar
  9. Allen, T.M., Hansen, C.B., and Lopes de Menezes, D.E., 1995, Pharmacokinetics of long circulating liposomes. Adv. Drug Del. Rev. 16:267.CrossRefGoogle Scholar
  10. Allen, T.M., Hansen, C.B., Martin, F., Redemann, C, and Yau-Young, A., 1991, Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta, 1066:29.PubMedCrossRefGoogle Scholar
  11. Allen, T.M., Hansen, C.B., and Stuart, D.D., 1998, Targeted sterically stabilized liposomal drug delivery, in: Medical Applications of Liposomes. D.D. Lasic and D. Papahadjopoulos, eds. Elsevier Science Publishers, Amsterdam, (in press).Google Scholar
  12. Allen, T.M., Hansen, C.B., and Zalipsky, S., 1995, Antibody-targeted Stealth® Liposomes, in: Stealth Lipsomes. D.D. Lasic and F. Martin, eds., CRC Press, Inc., Boca Raton.Google Scholar
  13. Allen, T.M., Mehra, T., Hansen, C.B., and Chin, Y.C., 1992, Stealth liposomes: an improved sustained release system for 1-β-D-arabinofuranosylcytosine. Cancer Res. 52:2431.PubMedGoogle Scholar
  14. Allen, T.M. and Moase, E.H., 1996, Therapeutic opportunities for targeted liposomal drug delivery. Adv. Drug Del. Rev. 21:117.CrossRefGoogle Scholar
  15. Allen, T.M. and Stuart, D., Eds., 1998, Liposome Pharmacokinetics: Classical, Sterically Stabilized, Cationic Liposomes and Immunoliposomes, in: Liposomes: Rational Design. A.S. Janoff, ed. Marcel Dekker, Inc., New York, (in press).Google Scholar
  16. Ansell, S.M., Tardi, P.G., and Buchkowsky, S.S., 1996, 3-(2-pyridyldithio)propionic acid hydrazide as a cross-linker in the formation of liposome-antibody conjugates. Bioconjug. Chem. 7:490.PubMedCrossRefGoogle Scholar
  17. Aragnol, D., and Leserman, L., 1986, Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc. Natl. Acad. Sci. USA 83:2699.PubMedCrossRefGoogle Scholar
  18. Bakker-Woudenberg, I.A.J.M., Lokerse, A.F., ten Kate, M.T., and Storm, G., 1992, Enhanced localization of liposomes with prolonged blood circulation time in infected lung tissue. Biochim. Biophys. Acta, 1138:318.PubMedCrossRefGoogle Scholar
  19. Blume, G., and Cevc, G., 1990, Liposomes for the sustained drug release in vivo. Biochim. Biophys. Acta, 1029:91.PubMedCrossRefGoogle Scholar
  20. Blume, G., Cevc, G., Crommelin, M.D., Bakker-Woudenberg, L.A., Kluft, C, and Storm, G., 1993, Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim. Biophys. Acta, 1149:180.PubMedCrossRefGoogle Scholar
  21. Boman, N.L., Masin, D., Mayer, L.D., Cullis, P.R., and Bally, M.B., 1994, Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors. Cancer Res. 54:2830.PubMedGoogle Scholar
  22. Brown, P.M., and Silvius, J.R., 1990, Mechanisms of delivery of liposome-encapsulated cytosine arabinoside to CV-1 cells in vitro. Fluorescence-microscopic and cytotoxicity studies. Biochim. Biophys. Acta, 1023:341.PubMedCrossRefGoogle Scholar
  23. Chonn, A., and Cullis, P.R., 1992, Ganglioside GM, and hydrophilic polymers increase liposome circulation times by inhibiting the association of blood proteins. J. Liposome Res. 2:397.CrossRefGoogle Scholar
  24. Corley, P., and Loughrey, H.C., 1994, Bonding of biotinated-liposomes to streptavidin is influenced by liposome composition. Biochim. Biophys. Acta, 1195:149.PubMedCrossRefGoogle Scholar
  25. Courtenay-Luck, N.S., Epenetos, A.A., Moore, R., Larche, M., Pecatasides, D., and Ritter, M.A., 1986, Development of primary and secondary immune responses to mouse monoclonal antibodies used in the diagnosis and therapy of malignant neoplasms. Cancer Res. 46:6489.PubMedGoogle Scholar
  26. Debs, R. J., Heath, T.D., and Papahadjopoulos, D., 1987, Targeting of anti-Thy 1.1 monoclonal antibody conjugated liposomes in Thy 1.1 mice after intravenous administration. Biochim. Biophys. Acta, 901:183.PubMedCrossRefGoogle Scholar
  27. DeFrees, S.A., Phillips, L., Guo, L., and Zalipsky, S., 1996, Sialyl Lewis X liposomes as a multivalent ligand and inhibitor of E-selectin mediated cellular adhesion. J. Am. Chem. Soc. 118:6101.CrossRefGoogle Scholar
  28. Defrise-Quertain, F., Chatelain, P., Delmelle, M., and Ruysschaert, J., 1984, Model Studies for Drug Entrapment and Liposome Stability. in: Liposome Technology. G. Gregoriadis, ed., CRC Press, Inc. 2:1-17.Google Scholar
  29. Eckardt, J.R., Campbell, E., Burries, H.A., Weiss, G.R., Rodriguez, G.I., Fields, S.M., Thurman, A.M., Peacock, N.W., Cobb, P., Rothenberg, M.L., Ross, M.E., and Von Hoff, D.D., 1994, A Phase II trial of DaunoXome, liposome encapsulated daunorubicin, in patients with metastatic adenocarcinoma of the colon. Am Journal Clin Oncol Cancer Clin Trials 17:498.Google Scholar
  30. Forssen, E.A., 1997, The design and development of DaunoXomeR for solid tumor targeting in vivo. Adv. Drug Del. Rev. 24:133.CrossRefGoogle Scholar
  31. Forssen, E.A., Male-Brune, R., Adler-Moore, J.P., Lee, M.J.A., Schmidt, P.G., Kraieva, T.B., Shimizu, S., and Tromberg, B.J., 1996, Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) in tumor tissue. Cancer Res. 56:2066.PubMedGoogle Scholar
  32. Gabizon, A., Catane, R., Uziely, B., Kaufman, B., Safra, T., Cohen, R., Martin, F., Huang, A., and Barenholz, Y., 1994, Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54:987.PubMedGoogle Scholar
  33. Gabizon, A., and Papahadjopoulos, D., 1988, Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl Acad. Sci. USA, 85:6949.PubMedCrossRefGoogle Scholar
  34. Gill, P.S., Espina, B.M., Muggia, F., Cabriales, S., Tulpule, A., Esplin, J.A., Liebman, H.A., Forssen, E., Ross, M.E., and Levine, A.M., 1995, Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin. J. Clin. Oncol 13:996.PubMedGoogle Scholar
  35. Goebel, F.-D., Goldstein, D., Goos, M., Jablonowski, H., and Stewart, J.S., 1996, Efficacy and safety of StealthR lipsomal doxorubicin in AIDS-related Kaposi’s sarcoma. Brit. J. Cancer, 73:989.PubMedCrossRefGoogle Scholar
  36. Goren, D., Horowitz, A.T., Zalipsky, S., Woodle, M.C., Yarden, Y., and Gabizon, A., 1996, Targeting of stealth liposomes to erB-2 (Her/2) receptor: in vitro and in vivo studies. Br. J. Cancer 74:1749.PubMedCrossRefGoogle Scholar
  37. Hansen, C.B., Kao, G.Y., Moase, E.H., Zalipsky, S. and Allen, T.M., 1995, Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim. Biophys. Acta, 1239:133.PubMedCrossRefGoogle Scholar
  38. Haran, G., Cohen, R., Barand, L, K., and Barenholz, Y., 1993, Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta, 1151:201.PubMedCrossRefGoogle Scholar
  39. Harding, J.A., Engbers, CM., Newman, M.S., Goldstein, N.I., and Zalipsky, S., 1997, Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim. Biophys. Acta (in press).Google Scholar
  40. Harrison, M., Tomlinson, D., and Stewart, S., 1995, Liposomal-entrapped doxorubicin: an active agent in AIDS-related Kaposi’s sarcoma. J. Clin. Oncol. 13:914.PubMedGoogle Scholar
  41. Heath, T.D., and Martin, F.J., 1986, The development and application of protein-liposome conjugation techniques. Chem. Phys. Lipids, 40:347.PubMedCrossRefGoogle Scholar
  42. Holmberg, E., Maruyama, K., Litzinger, D.C., Wright, S., Davis, M., Kabalka, G.W., Kennel, S.J., and Huang, L., 1989, Highly efficient immunoliposomes prepared with a method which is compatible with various lipid compositions. Biochem. Biophys. Res. Commun. 165:1272.PubMedCrossRefGoogle Scholar
  43. Hwang, K.J., 1987, Liposome Pharmacokinetics. in: Liposomes: from Biophysics to Therapeutics. M. J. Ostro, ed., Marcel Dekker, New York.Google Scholar
  44. Ishii, Y., Aramaki, Y., Hara, T., Tsuchiya, S., and Fuwa, T., 1989, Preparation of EGF labeled liposomes and their uptake by hepatocytes. Biochem. Biophys. Res. Commun. 160:732.PubMedCrossRefGoogle Scholar
  45. Jain, R.K., 1987, Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 559.Google Scholar
  46. Kirpotin, D., Hong, K., Mullah, N., Papahadjopoulos, D., and Zalipsky, S., 1996, Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett. 388:115.PubMedCrossRefGoogle Scholar
  47. Kirpotin, D., Park, J.W., Hong, K., Keller, G., Benz, C, and Paphadjopoulos, D., 1996, Binding and endocytosis of sterically stabilized anti-HER2 immunoliposomes by human breast cancer cells. Proc. Am. Assoc. Cancer Res. 37:3186.Google Scholar
  48. Kirpotin, D., Park, J.W., Hong, K., Zalipsky, S., Li, W.-L., Carter, P., Benz, C.C., and Papahadjopoulos, D., 1997, Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36:66.PubMedCrossRefGoogle Scholar
  49. Klibanov, A.L. and Huang, L., 1992, Long-circulating liposomes: development and perspectives. J. Liposome Res. 2:321.CrossRefGoogle Scholar
  50. Klibanov, A.L., Maruyama, K., Torchilin, V.P., and Huang, L., 1990, Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268:235.PubMedCrossRefGoogle Scholar
  51. Klibanov, A.L., Serbina, N., Torchilin, V.P., and Huang, L., 1996, Attachment of ligands to liposomes via PEG spacer for prolonged liposome circulation and targeting. J. Liposome Res. 6:195.Google Scholar
  52. Lee, R.J., and Huang, L., 1996, Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J. Biol Chem. 271:8481.PubMedCrossRefGoogle Scholar
  53. Lee, R.J. and Low, P.S., 1994, Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J. Biol. Chem. 269:3198.Google Scholar
  54. Lee, R.J. and Low, P.S., 1995, Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim. Biophys. Acta, 1233:134.PubMedCrossRefGoogle Scholar
  55. Longman, S.A., Cullis, P.R., Choi, L., de Jong, G., and Bally, M.B., 1995, A two-step targeting approach for delivery of doxorubicin-loaded liposomes to tumour cells in vivo. Cancer Chemother. Pharmacol 36:91.PubMedCrossRefGoogle Scholar
  56. Lopes de Menezes, D.E., Pilarski, L.M., and Allen, T.M., 1995, Selective cytoxicity of immunoliposomal to B lymphocytes. Proc. Am. Assoc. Cancer Res. 36:307.Google Scholar
  57. Loughrey, H., Bally, M.B., and Cullis, P.R., 1987, A non-covalent method of attaching antibodies to liposomes. Biochim. Biophys. Acta, 901:157.PubMedCrossRefGoogle Scholar
  58. Loughrey, U.C., Choi, L.S., Cullis, P.R., and Bally, M.B., 1990, Optimized procedures for the coupling of proteins to liposomes. J. Immunol. Methods, 132:25.PubMedCrossRefGoogle Scholar
  59. Loughrey, U.C., Choi, L.S., Wong, K.F., Cullis, P.R., and Bally, M.B., 1993, Preparation of streptavidin-liposomes for use in ligand specific targeting applications, in: Liposome Technology, 2nd ed. G. Gregoriadis, ed. CRC Press. Boca Raton.Google Scholar
  60. Lundberg, B., Hong, K., and Papahadjopoulos, D., 1993, Conjugation of apolipoprotein B with liposomes and targeting to cells in culture. Biochim. Biophys. Acta, 1149:305.PubMedCrossRefGoogle Scholar
  61. Martin, F.J., and Papahadjopoulos, D., 1982, Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting. J. Biol. Chem. 257:286.PubMedGoogle Scholar
  62. Maruyama, K., Kennel, S.J., and Huang, L., 1990, Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc. Natl. Acad. Sci. USA, 87:5744.PubMedCrossRefGoogle Scholar
  63. Maruyama, K., Kennel, S.J., and Huang, L., 1990, Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc. Natl. Acad. Sci. USA 87:5744.PubMedCrossRefGoogle Scholar
  64. Maruyama, K., Takahashi, N., Tagawa, T., Nagaike, K., and Iwatsuru, M., 1997, Immunoliposomes bearing polyethyleneglycol-coupled Fab’ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett. 413:177.PubMedCrossRefGoogle Scholar
  65. Maruyama, K., Takizawa, T., Takahashi, N., Tagawa, T., Nagaike, K., and Iwatsuru, M., 1996, Factors influencing longevity and target binding of PEG-immunoliposomes conjugated antibodies at PEG’s terminals. J. Liposome Res. 6:206.Google Scholar
  66. Maruyama, K., Takizawa, T., Takahashi, N., Tagawa, T., Nagaike, K., and Iwatsuru, M., 1997, Targeting efficiency of PEG-immunoliposome-conjugated antibodies at PEG terminals. Adv. Drug Del. Rev. 24:235.CrossRefGoogle Scholar
  67. Maruyama, K., Takizawa, T., Yuda, T., Kennel, S.J., Huang, L., and Iwatsuru, M., 1995, Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. Biochim. Biophys. Acta, 1234:74.PubMedCrossRefGoogle Scholar
  68. Mayer, L.D., Bally, M.B., and Cullis, P.R., 1986, Uptake of adriamycin into large lunilamellar vesicles in response to a pH gradient. Biochim. Biophys. Acta, 857:123.PubMedCrossRefGoogle Scholar
  69. Mayer, L.D., Hope, M.J., and Cullis, P.R., 1986, Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta 858:168.Google Scholar
  70. Mori, A., Kennel, S.I., Waalkes, M.V.B., Scherphof, G.L., and Huang, L., 1995, Characterization of organspecific immunoliposomes for delivery of 3′, 5′-O-dipalmitoyl-5-fluoro-2′-deoxyuridine in a mouse lung-metastasis model. Cancer Chemother. Pharmacol. 35:447.PubMedCrossRefGoogle Scholar
  71. Mori, A., Klibanov, A.L., Torchilin, V.P., and Huang, L., 1991, Influence of the steric barrier of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett. 284:263.PubMedCrossRefGoogle Scholar
  72. Muggia, F., Hainsworth, J.D., Jeffers, S., Miller, P., Groshen, S., Tan, M., Roman, L., Uziely, B., Muderspach, L., Garcia, A., Burnett, A., Greco, F.A., Morrow, C.P., Paradiso, L.J., and Liang, L-J., 1997, Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J. Clin. Oncol. 15.Google Scholar
  73. Northfelt, D.W., Dezube, B.J., Thommes, J.A., Levine, R., Von Roenn, J.H., Dosik, G.M., Rios, A., Krown, S.E., DuMond, C, and Mamelok, R.D., 1997, Efficacy of pegylated-liposomal doxorubicin in the treatment of AIDS-related Kaposi’s sarcoma after failure of standard chemotherapy. J. Clin. Oncol. 15:653.PubMedGoogle Scholar
  74. Northfelt, D.W., Martin, F.J., Kaplan, L.D., Russell, J., Andersen, M., Lang, J., and Volberding, P.A., 1993, Pharmacokinetics, tumour localization and safety of Doxil (liposomal doxorubicin) in AIDS patients with Kaposi’s sarcoma. Proc. Am. Soc. Clin. Oncol. 12:51.Google Scholar
  75. Northfelt, D.W., Martin, F.J., Working, P., Volberding, P.A., Russell, J., Newman, M., Amantea, M.A., and Kaplan., L.D., 1996, Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumour localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J. Clin. Pharmacol. 36:55.PubMedCrossRefGoogle Scholar
  76. Olson, F., Hunt, C.A., Szoka, F.C., Vail, W.J., and P.D., 1979, Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta, 557:9.PubMedCrossRefGoogle Scholar
  77. Osdol, W.V., Fujimori, K., and Weinstein, J.N., 1991, An analysis of monocolonal antibody distribution in microscope tumour nodules: consequences of a “binding site barrier”. Cancer Res. 51:4776.PubMedGoogle Scholar
  78. Papahadjopoulos, D., Allen, T.M., Gabizon, A., Mayhew, E., Matthay, K., Huang, S.K., Lee, K.D., Woodle, M.C., Lasic, D.D., Redemann, C, and Martin, F.J., 1991, Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. USA 88:11460.PubMedCrossRefGoogle Scholar
  79. Phillips, N.C. and Dahman, J., 1995, Immunogenicity of immunoliposomes: reactivity against species-specific IgG and liposomal phospholipids. Immunol. Lett. 45:149.PubMedCrossRefGoogle Scholar
  80. Ranson, M., O’Bryne, K., Carmichael, J., Smith, D., Stewart, S., and Howell, A., 1996, Phase II dose-finding trial of DOX-SL (Stealth® liposomal doxorubicin HC1) in the treatment of advanced breast cancer. Proc. Am. Soc. Clin. Oncol. 15:124.Google Scholar
  81. Rosenberg, M.B., Breakefield, X.O., and Hawrot, E., 1987, Targeting of liposomes to cells bearing nerve growth factor receptors mediated by biotinylated nerve growth factor. J. Neurochem. 48:865.PubMedCrossRefGoogle Scholar
  82. Schroff, R. W., Foon, K.A., Beatty, S.M., Oldham, R.K., and Morgan, A.C., 1985, Human anti-mouse immunoglobulin responses in patients receiving monoclonal antibody therapy.” Cancer Res. 48:879.Google Scholar
  83. Senior, J., Delgado, C, Fisher, D., Tilcock, C, and Gregoriadis, G., 1991, Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with the poly(ethylene glycol)-coated vesicles. Biochim. Biophys. Acta, 1062:77.PubMedCrossRefGoogle Scholar
  84. Shahinian, S. and Silvius, J.R., 1995, A novel strategy affords high-yield coupling of antibody Fab’ fragments to liposomes. Biochim. Biophys. Acta, 1239:157.PubMedCrossRefGoogle Scholar
  85. Suzuki, S., Watanabe, S., Masuko, T., and Hashimoto, Y., 1995, Preparation of long-circulating immunoliposomes containing adriamycin by a novel method to coat immunoliposomes with poly(ethylene glycol). Biochim. Biophys. Acta 1245:9.PubMedCrossRefGoogle Scholar
  86. Suzuki, S., Watanabe, S., Masuko, T., and Hashimoto, Y., 1995, Preparation of long-circulating immunoliposomes containing adriamycin by a novel method to coat immunoliposomes with poly(ethylene glycol). Biochim. Biophys. Acta, 124:9.CrossRefGoogle Scholar
  87. Takizawa, T., Maruyama, K., and Iwatsuru, M., 1996, Novel immunoliposomes modified with amphipathic polyethyleneglycols conjugated at their distal terminals to monoclonal antibodies. J. Liposome Res. 6:261.Google Scholar
  88. Torchilin, V.P., and Klibanov, A.L., 1993, Coupling of ligands with liposome membranes. Drug Target. Del. 2:227.Google Scholar
  89. Torchilin, V.P., Klibanov, A.L., Huang, L., O’Donnell, S., Nossiff, N.D., and Khaw, B.A., 1992, Targeted accumulation of polyethylene glycol-coated immunoliosomes in infarcted rabbit myocardium. FASEB J. 6:2716.PubMedGoogle Scholar
  90. Torchilin, V.P., Narula, J., Halpern, E., and Khaw, B.A., 1996, Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium. Biochim. Biophys. Acta, 1279:75.PubMedCrossRefGoogle Scholar
  91. Torchilin, V.P., and Trubetskoy, V.S., 1995, New synthetic amphilphilic polymers for steric protection of liposomes in vivo. J. Pharm. Sci. 85:85.Google Scholar
  92. Unezaki, S., Maruyama, K., Hosoda, J.-L, Nagae, I., Koyanayi, Y., Nakata, M., Ishida, O., Iwatsuru, M., and Tsuchiya, S., 1996, Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int. J. Pharmaceut. 144:11.CrossRefGoogle Scholar
  93. Uster, P.S., Allen, T.M., Daniel, B.E., Mendez, C.J., Newman, M.S., and Zhu, G.Z., 1996, Insertion of poly(ethylene glycol) derivatized phospholipid into preformed liposomes results in prolonged in vivo circulation time, FEBS Lett. 386:243.PubMedCrossRefGoogle Scholar
  94. Uziely, B., Jeffers, S., Isacson, R., Kutsch, K., Wei-Tsao, D., Yehoshua, Z., Libson, E., Muggia, F.M., and Gabizon, A., 1995, Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J. Clin. Oncol. 13:1777.PubMedGoogle Scholar
  95. Vail, D.M., Kravis, L.D., Cooley, A.J., Chun, R., and MacEwan, E.G., 1997, Preclinical trial of doxorubicin entrapped in sterically stabilized liposomes in dogs with spontaneously arising malignant tumors. Cancer Chemother. and Pharmacol. 39:410.CrossRefGoogle Scholar
  96. Vidal, M., Sainte-Marie, J., Philippot, J.R., and Bienvenue, A., 1985, LDL-mediated targeting of liposomes to leukemic lymphocytes in vitro. EMBO J. 4:2461.PubMedGoogle Scholar
  97. Vingerhoeds, M.H., Steerenberg, P.A., Hendriks, J.J.G.W., Kekker, L.C., van Hoesel, Q.G.C.M., Crommelin, D.J.A., and Storm, S., 1996, Immunoliposome-mediated targeting of doxorubicin to human ovarian carcinoma in vitro and in vivo. Br. J. Cancer 74:1023.PubMedCrossRefGoogle Scholar
  98. Weiner, A.L., 1990, Chemistry and Biology of Immunotargeted Liposomes. Targeted Therapeutic Systems. P. Tyle and B. P. Ram, eds. Marcel Dekker, Inc., New York.Google Scholar
  99. Woodle, M.C., Lasic, D.D., Redemann, C, Newman, M., Babbar, S., and Martin, F.J., 1991, In vivo studies of long circulating (Stealth) liposomes in rats. Periodicum Biologorum. 93:349.Google Scholar
  100. Zalipsky, S., 1993, Synthesis of end-group functionalized polyethylene glycol-lipid conjugates for preparation of polymer-grafted liposomes. Bioconj. Chem. 4:296.CrossRefGoogle Scholar
  101. Zalipsky, S., Brandeis, E., Newman, M., and Woodle, M.C., 1994, Long circulating, cationic liposomes containing amino-PEG-phosphatidylethanolamine. FEBS Lett. 353:71.PubMedCrossRefGoogle Scholar
  102. Zalipsky, S., Hansen, C.B., Oaks, J.M., and Allen, T.M., 1996, Evaluation of blood clearance and biodistribution of poly(2-oxazoline)-grafted liposomes. J. Pharm. Sci. 85:133.PubMedCrossRefGoogle Scholar
  103. Zalipsky, S., Mullah, N., Harding, J.A., Gittelman, J., Guo, L., and DeFrees, S.A., 1997, Poly(ethylene glycol)-grafted liposomes with oligopeptide or oligosaccharide ligands appended to the termini of the polymer chains. Bioconj. Chem. 8:111.CrossRefGoogle Scholar
  104. Zalipsky, S., Newman, M., Punatambekar, B., and Woodle, M.C., 1993, Model ligands linked to polymer chains on liposomal surfaces: application of a new functionalized polyethylene glycol-lipid conjugate. Polym. Materials: Sci. Eng. 67:519.Google Scholar
  105. Zalipsky, S., Puntambekar, B., Bolikas, P., Engbers, CM., and Woodle, M.C., 1995, Peptide attachment to extremities of liposomal surface grafted PEG chains: Preparation of the long-circulating form of laminin pentapetide, YIGSR. Bioconj. Chem. 6:705.CrossRefGoogle Scholar
  106. Zu, N.Z., Da, D., Rudoll, TL., Needham, D., Whorton, A.R., and Dewhirst, M.W., 1993, Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumor tissue. Cancer Res. 53: 3765.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Theresa M. Allen
    • 1
  • Daniel Lopes de Menezes
    • 1
  • Christian B. Hansen
    • 1
  • Elaine H. Moase
    • 1
  1. 1.Department of PharmacologyUniversity of AlbertaEdmontonCanada

Personalised recommendations