The Role of Hydration in Stabilization of Liposomes: Resistance to Oxidative Damage of PEG-Grafted Liposomes

  • Aba Priev
  • Ayelet M. Samuni
  • Oren Tirosh
  • Yechezkel Barenholz
Part of the NATO ASI Series book series (NSSA, volume 300)


Phospholipids are amphipathic compounds which form structures such as micelles and liposomes in aqueous media as a result of minimizing hydrophobic interaction. Thermodynamic stability of the lipid assemblies is due to a balance between the weak attractive van der Waals and hydrophobic forces, and repulsive electrostatic, steric, and hydration ones (Lasic and Martin, 1995). Lipid peroxidation (LPO) is a major damaging process in membranes and in liposomal dispersions. Oxidation processes in membranes are initiated by reactive oxygen species (ROS) formed in the aqueous phase and in the lipids, leading to chemical degradation, especially of polyunsaturated acyl chains of phospholipids.


High Performance Liquid Chromatography Lipid Bilayer Partial Molar Volume Adiabatic Compressibility Apparent Molar Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almagor, A., Priev, A., Barshtein, G., Gavish, B., and Yedgar, S., 1997, Reduction of protein volume and compressibility by macromolecular cosolvents:dependence on the cosolvent molecular weight, Biochim. Biophys. Acta: in press.Google Scholar
  2. Arakawa, T., and Timasheff, S.N., 1985, Mechanism of polyethylene glycol interaction with proteins, 24:6756.Google Scholar
  3. Arnold, K., Zschoemig, O., Barthel, D., and Herold, W., 1990, Exclusion of polyethylene glycol from liposome surfaces, Biochim. Biophys. Acta 1022:303.PubMedCrossRefGoogle Scholar
  4. Baekmark, T.R., Pedersen, S., Jorgensen, K., and Mouritsen, O.G., 1997, The effect of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidyl-choline, Biophys. J. 73:1479.PubMedCrossRefGoogle Scholar
  5. Barenholz, Y., and Amselem, S., 1993, Quality control assays in the development and clinical use of liposome-based formulations, in: Liposome Technology, G. Gregoriadis, ed., CRC Press, Boca Raton.Google Scholar
  6. Barenholz, Y., Freire, E., Thompson, T.E., Correa-Freire, M.C., Bach, D., and Millar, I.R., 1983, Thermotropic behavior of aqueous dispersions of glucosylceramide-dipalmitoylphosphatidylcholine mixtures, Biochemistry 22:3497.CrossRefGoogle Scholar
  7. Barenholz, Y., Gibbes, D., Litman, B J., Goll, J., Thompson, T.E., and Carlson, F.D., 1977, A simple method for the preparation of homogeneous phospholipid vesicles, Biochemistry 16:2806.PubMedCrossRefGoogle Scholar
  8. Barenholz, Y., and Lasic, D.D., 1996, Handbook of Nonmedical Applications of Liposomes, CRC Press, Boca Raton.Google Scholar
  9. Bhat, R., and Timasheff, S.N., 1992, Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols, Protein Sci. 1:1133.PubMedCrossRefGoogle Scholar
  10. Bligh, E.G., and Dyer, W. J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37:911.PubMedCrossRefGoogle Scholar
  11. Blume, G., and Cevc, G., 1993, Molecular mechanism of the lipid vesicle longevity in vivo, Biochim. Biophys. Acta. 1146:157.PubMedCrossRefGoogle Scholar
  12. Buckin, V.A., Kankiya, B.I., Bulichov, N.V., Lebedev, A.V., Gukovsky, I.Y., Chuprina, V.P., Sarvazyan, A.P., and Williams, A.R., 1989, Measurement of anomalously high hydration of (dA)n(dT)n double helices in dilute solution, Nature 340:321.PubMedCrossRefGoogle Scholar
  13. Buckin, V.A., Kankiya, B.I., Rentzeperis, D., and Marky, L.A., 1994, Mg2+ recognizes the sequence of DNA through its hydration shell, J. Am. Chem. Soc. 116:9423.CrossRefGoogle Scholar
  14. Buckin, V.A., Sarvazyan, A.P., and Pasechnik, V. I., 1979, Study of vesicular lipid membranes by the ultrasound method, Biofizika 24:61.Google Scholar
  15. Chalikian, T.V., Sarvazyan, A.P., and Breslauer, K. J., 1993, Partial molar volumes, expansibilities, and compressibilities of a, w-amonocarboxylic acids in aqueous solutions between 18 and 55° C, J. Phys. Chem. 97:13017.CrossRefGoogle Scholar
  16. Chalikian, T.V., Sarvazyan, A.P., Plum, G.E., and Breslauer, K.J., 1994, Influence of base composition, base sequence, and duplex structure on DNA hydration: apparent molar volumes and apparent molar adiabatic compressibilities of synthetic and natural DNA duplexes at 25° C, Biochemistry 33:2394.PubMedCrossRefGoogle Scholar
  17. Colotto, A., Kharakoz, D.P., Lohner, K., and Laggner, P., 1993, Ultrasonic study of melittin effects on phospholipid model membranes, Biophys. J. 65:2360.PubMedCrossRefGoogle Scholar
  18. deGennes, P.G., 1987, Polymers at an interface: a simplified view, Adv. Colloid Interface Sci. 27:189–209.CrossRefGoogle Scholar
  19. Eggers, F., and Funk, T., 1973, Ultrasonic measurements with milliliter liquid samples in the 0.5-100 MHz range, Rev. Sci. Instrum. 44:969.PubMedCrossRefGoogle Scholar
  20. Goren, D., Gabizon, A., and Barenholz, Y., 1990, The influence of physical characteristics of liposomes containing doxorubicin on their pharmacological behavior, Biochim. Biophys. Acta 1029:285.PubMedCrossRefGoogle Scholar
  21. Grit, M., Crommelin, D.J.A., and Lang, J.K., 1991, Quantitative determination of phosphatidylcholine, phosphatidylglycerol and their lyso forms from liposome dispersions by high performance liquid chromatography (HPLC) using high sensitivity refractive index detection, J. Chromatogr. 585:239.CrossRefGoogle Scholar
  22. Halliwell, B., and Gutteridge, J.M.C., 1989, Free Radicals in Biology and Medicine, Clarendon Press, Oxford.Google Scholar
  23. Harada, S., Nakajima, T., Komatsu, T., and Nakagawa, T., 1978, Apparent molar volumes and adiabatic compressibilities of ethylene glycol derivatives in water at 5, 25, and 45 °C, J. Solut. Chem. 7:463.CrossRefGoogle Scholar
  24. Hristova, K., and Needham, D., 1994, The influence of polymer-grafted lipids on the physical properties of lipid bilayers: a theoretical study, J. Colloid Interface Sci. 168:302.CrossRefGoogle Scholar
  25. Jordan, CF., Lerman, L.S., and Venable, J.H., 1972, Structure and circular dichroism of DNA in concentrated polymer solutions, Nature 236:67.CrossRefGoogle Scholar
  26. Kell, G.S.J., 1975, Volume properties of ordinary water, Chem. Eng. Data, 20:97.CrossRefGoogle Scholar
  27. Kenworthy, A.K., Hristova, K., Needham, D., and McIntosh, T.J., 1995a, Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached polyethylene glycol., Biophys. J. 68:1921.PubMedCrossRefGoogle Scholar
  28. Kenworthy, A.K., Simon, S.A., and Mclntosh, T.J., 1995b, Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached polyethylene glycol, Biophys. J. 68:1903.PubMedCrossRefGoogle Scholar
  29. Kharakoz, D.P., 1989, Volumetric properties of proteins and their analogs in diluted water solutions. 1. Partial volumes of amino acids at 15–55 °C, Biophys. Chem. 34:115.PubMedCrossRefGoogle Scholar
  30. Kharakoz, D.P., Colotto, A., Lohner, K., and Laggner, P., 1993, Fluid-gel interphase line and density fluctuations in dipalmitoylphosphatidylcholine multilamellar vesicles. An ultrasound study, J. Phys. Chem. 97:9844.CrossRefGoogle Scholar
  31. Kharakoz, D.P., and Sarvazyan, A., 1993, Hydrational and intrinsic compressibilities proteins, Biopolymers 33:11.PubMedCrossRefGoogle Scholar
  32. Kiyosawa, K., 1991, Volumetric properties of polyols (ethylene gly, glycerol, meso-erythritol, xilitol and mannitol) in relation to their membrane permeability: group additivity and estimation of the maximum radius of the molecules, Biochim. Biophys. Acta, 1064:251.PubMedCrossRefGoogle Scholar
  33. Kuhl, T.L., Leckband, D.E., Lasic, D.D., and Israelachvili, J.N., 1994, Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups, Biophys. J. 66:1479.PubMedCrossRefGoogle Scholar
  34. Lasic, D.D., 1996, Doxorubicin in sterically stabilized liposomes, Nature, 380:561.PubMedCrossRefGoogle Scholar
  35. Lasic, D.D., and Martin, F., 1995, Stealth Liposomes, CRC Press, Boca Raton.Google Scholar
  36. Lichtenberg, D., and Barenholz, Y., 1988, Liposomes: preparation, characterization, and preservation, in: Methods of Biochemical Analysis, D. Glick, ed., John Wiley & Sons, New York.Google Scholar
  37. MacDonald, R.C., MacDonald, R.I., Menco, B.P., Takeshita, K., Subbarao, N.K., and Hu, L., 1991, Small-volume extrusion apparatus for preparation of large, unilamellar vesicles, Biochim. Biophys. Acta, 1061:297.PubMedCrossRefGoogle Scholar
  38. Marino, F.J., and Benjamin, F., 1984, A review of current principles and practices, in: Pharmaceutical Dosage Forms: Parenteral Medications, K. E. Avis, L. Lachman and H. A. Lieverman, ed., Marcel Dekker, New York.Google Scholar
  39. Marsh, D., 1990, Phase behavior and hydration, in: Handbook of Lipid Bilayers, D. Marsh, ed., CRC Press, Boca Raton.Google Scholar
  40. Martin, F.J., and Lasic, D.D., 1991, The molecular origin of the long blood circulation time of Stealth liposomes., Biophys. J. 59:497.Google Scholar
  41. Mitaku, S., and Aruga, S., 1982, Effect of calcium ion on the mechanical properties of lipid bilayer membrane, Biorheology 19:185.PubMedGoogle Scholar
  42. Mitaku, S., Jippo, T., and Kataoka, R., 1983, Thermodynamic properties of the lipid bilayer transition. Pseudocritical phenomena, Biophys. J. 42:137.PubMedCrossRefGoogle Scholar
  43. Needham, D., Mclntosh, T.J., and Lasic, D., 1992, Repulsive interactions and mechanical stability of polymer-grafted lipid membranes, Biochim. Biophys. Acta. 1108:40.PubMedCrossRefGoogle Scholar
  44. Priev, A., Almagor, A., Yedgar, S., and Gavish, B., 1996, Glycerol decreases the volume and compressibility of protein interior. Biochemistry. 35:2061.PubMedCrossRefGoogle Scholar
  45. Priev, A., Sarvazyan, A.P., Dzantiev, B.B., Zherdev, A.V., and Cherednikova, T.V., 1990, Changes in the adiabatic compressibility of mono-and polyclonal antibodies during interaction with antigens, Mol. Biol. 24:629.Google Scholar
  46. Samuni, A.M., and Barenholz, Y., 1997, Stable nitroxide radicals protect lipid acyl chains from radiation damage, Free Radic. Biol Med. 22:1165.PubMedCrossRefGoogle Scholar
  47. Samuni, A.M., Barenholz, Y., Crommelin, D.J.A., and Zuidam, N. J., 1997, γ-irradiation damage to liposomes differing in composition and their protection by nitroxides, Free Radic. Biol. Med 23:972.PubMedCrossRefGoogle Scholar
  48. Sarvazyan, A.P., 1982, Development of methods of precise ultrasonic measurements in small volumes of liquids, Ultrasonics 20:151.CrossRefGoogle Scholar
  49. Sarvazyan, A.P., 1991, Ultrasonic velocimetry of biological compounds, Annu. Rev. Biophys. Biophys. Chem. 20:321.PubMedCrossRefGoogle Scholar
  50. Sarvazyan, A.P., and Chalikian, T.V., 1991, Theoretical analysis of an ultrasonic interferometer for precise measurements at high pressure, Ultrasonics 29:119.PubMedCrossRefGoogle Scholar
  51. Shilnikov, G.V., Priev, A., and Achmedov, A., 1991, Bulk-elastic properties of aqueous solutions of certain carbohydrates, Biofizika 36:276.Google Scholar
  52. Tirosh, O., Barenholz, Y., Katzhendler, J., and Priev, A., 1998, Hydration of polyethylene glycol-grafted liposomes, Biophys. J. 74:in press.Google Scholar
  53. Tirosh, O., Kohen, R., Alon, A., Katzhendler, J., and Barenholz, Y., 1997a, Novel synthetic phospholipid protects lipid bilayers against oxidative damage: role of hydration layer and bound water, J. Chem. Soc. Perkin Trans. 2. 383.Google Scholar
  54. Tirosh, O., Kohen, R., Katzhendler, J., Alon, A., and Barenholz, Y., 1997b, Oxidative stress effect on the integrity of lipid bilayers is modulated by cholesterol level of bilayers, Chem. Phys. Lipid. 87:17.CrossRefGoogle Scholar
  55. Torchilin, V.P., Omelyanenko, V.G., Papisov, M.I., Bogdanov, A.A., Trubetskoy, V.S., Herron, J.N., and Gentry, CA., 1994, Polyethylene glycol on the liposome surface: on the mechanism of polymer-coated liposome longevity, Biochim. Biophys. Acta. 1195:11.PubMedCrossRefGoogle Scholar
  56. Woodle, M.C., 1993, Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation., Chem. Phys. Lipids 64:249.PubMedCrossRefGoogle Scholar
  57. Woodle, M.C., 1997, Polyethylene glycol-grafted liposome therapeutics, in: Polyethyleneglycol Chemistry and Biological Applications, S. Z. J.M. Harris, ed., American Chemical Society, Washington.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Aba Priev
    • 1
  • Ayelet M. Samuni
    • 1
  • Oren Tirosh
    • 1
  • Yechezkel Barenholz
    • 1
  1. 1.Department of BiochemistryThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations