Pseudomonas pp 271-329 | Cite as

Selected Industrial Biotransformations

  • Marcel G. Wubbolts
  • Bernard Witholt
Part of the Biotechnology Handbooks book series (BTHA, volume 10)


The development and application of biocatalysts, be it whole cell or enzymatic systems, rely on understanding the metabolism of biotic and xenobiotic substances by biological systems. The knowledge of metabolic routes has traditionally been applied to synthesize ‘common’ metabolites, such as citric acid, amino acids, and more complex substances like vitamins or antibiotics. The vast amount of information currently available on metabolic pathways, however, also allows us to design and construct biocatalysts that perform reactions leading to the formation of substances unknown to biological systems.


Pseudomonas Putida Enzyme Commission Picolinic Acid Serine Racemase Amino Acid Amide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abalain, J. H., Distefano, S., Amet, Y., Quemener, E., Abalaincolloc, M. L., and Floch, H. H., 1993, Cloning, DNA sequencing, and expression of 3,17-ß-hydroxysteroid dehydrogenase from Pseudomonas testosteroni, J. Steroid Biochem. Mol. Biol. 44: 133–139.PubMedGoogle Scholar
  2. Abbott, B. J., and Hou, C. T., 1973, Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans, Appl. Microbiol. 26: 86–91.PubMedGoogle Scholar
  3. Adger, B., Bes, M. T., Grogan, G., McCague, R., Pedragosamoreau, S., Roberts, S. M., Villa, R., Wan, P. W. H., and Willetts, A. J., 1995, Application of enzymatic Baeyer-Villiger oxidations of 2-substituted cycloalkanones to the total synthesis of (R)-(+)-lipoic acid, J. Chem. Soc. Chem. Commun. 15: 1563–1564.Google Scholar
  4. Allen, C. C. R., Boyd, D. R., Dalton, H., Sharma, N. D., Haughey, S. A., McMordie, R. A. S., McMurray, B. T., Sheldrake, G. N., and Sproule, K., 1995, Sulfoxides of high enantiopurity from bacterial dioxygenase-catalyzed oxidation, J. Chem. Soc. Chem. Commun. 2: 119–120.Google Scholar
  5. Allenza, P., 1991, Conversion of mannose to fructose, U.S. Patent 5 049 494.Google Scholar
  6. Allenza, P., Clifft, C. G., and Morrell, M. J., 1991, Some novel producers of cyclodextrin glycosyltransferases, U.S. Patent 5 008 195.Google Scholar
  7. Allison, D. G., and Goldsbrough, M. J., 1994, Polysaccharide production in Pseudomonas cepacia, J. Basic. Microbiol. 34: 3–10.PubMedGoogle Scholar
  8. Alvarez-Jacobs, J., Court, D., and Guarneros, G., 1990, Lysine and methionine overproduction by an Escherichia coli strain transformed with Pseudomonas acidovorans DNA, Biotechnol. Lett. 12: 425–430.Google Scholar
  9. Amato, I., 1991, Bacterial indigo gives the blues to industrial chemists, Science 266: 1213.Google Scholar
  10. Amemura, A., and Futai, M., 1992, Polypeptide possessing isoamylase activity and its use in the hydrolysis of amylaceous substances, U.S. Patent 5 118 622.Google Scholar
  11. Anderson, A. J., and Dawes, E. A. 1990, Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates, Microbiol. Rev. 54: 450–472.PubMedGoogle Scholar
  12. Andreoni, V., Bernasconi, S., and Bestetti, G., 1995, Biotransformation of ferulic acid and related compounds by mutant strains of Pseudomonas ßuorescens, Appl. Microbiol. Biotechnol. 42: 830–835.Google Scholar
  13. Anonymous, 1985, Biopol polymers made by fermentation, Eur. Plast. News 12: 38.Google Scholar
  14. Anonymous, 1986, ICI leads chemicals from biotech thrust, Eur. Chem. News 46: 17.Google Scholar
  15. Asano, Y., Yamamoto, Y., and Yamada, H., 1994, Catechol 2,3-dioxygenase-catalyzed synthesis of picolinic acids from catechols, Bioscience Biotechnol. Biochem. 58: 2054–2056.Google Scholar
  16. Asmara, W., Murdiyatmo, U., Baines, A. J., Bull, A. T., and Hardman, D. J., 1993, Protein engineering of the 2-haloacid halidohydrolase IVa from Pseudomonas cepacia MBA4, Biochem. J. 292: 69–74.PubMedGoogle Scholar
  17. Aust, S. D., Bourquin, A., Loper, J. C., Salanitro, J. P., Suk, W. A., and Tiedje, J., 1994, Biodegradation of hazardous wastes, Environ. Health Perspect. 102: 245–252.PubMedGoogle Scholar
  18. Baba, N., Mimura, M., Hiratake, J., Uchida, K., and Oda, J., 1988, Enzymic resolution of racemic hydroperoxides in organic solvent, Agric. Biol. Chem. 52: 2685–2687.Google Scholar
  19. Baird, J. K., Sandford, P. A., and Cottrell, I. W., 1983, Industrial applications of some new microbial polysaccharides, Bio/Technol. 1: 778–783.Google Scholar
  20. Ballard, D. G. H., Courtis, A., Shirley, I. A., and Taylor, S. C., 1983, A biotech route to polyphenylene, J. Chem. Soc. Chem. Commun. 634: 954–955.Google Scholar
  21. Baptist, J. N., Gholson, R. K., and Coon, M. J., 1963, Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation, Biochim. Biophys. Acta 69: 40–47.PubMedGoogle Scholar
  22. Bartilson, M., Nordlund, I., and Shingler, V., 1990, Location and organization of the dimethylphenol catabolic genes of Pseudomonas CF600, Mol. Gen. Genet. 220: 294–300.PubMedGoogle Scholar
  23. Beecher, J., Richardson, P., and Willetts, A., 1994, Baeyer-Villiger monooxygenase-de-pendent biotransformations: Stereospecific heteroatom oxidations by camphor-grown Pseudomonas putida to produce chiral sulfoxides, Biotech. Lett. 16: 909–912.Google Scholar
  24. Bestetti, G., and Galli, E., 1987, Characterization of a novel TOL-like plasmid from Pseudomonas putida involved in 1,2,4-trimethylbenzene degradation, J. Bacteriol. 169: 1780–1783.PubMedGoogle Scholar
  25. Bestetti, G., Galli, E., Leoni, B., Pelizzoni, F., and Sello, G., 1992, Regioselective hydroxylation of chlorobenzene and chlorophenols by a Pseudomonas putida, Appl. Microbiol. Biotechnol. 37: 260–263.Google Scholar
  26. Bevinakatti, H. S., and Banerji, A. A., 1992, Lipase catalysis in organic-solvents-application to the synthesis of (R)-atenolol and (S)-atenolol, J. Org. Chem. 57: 6003–6005.Google Scholar
  27. Bianchi, D., Bosetti, A., Cesti, P., Golini, P., and Spezia, S., 1993, Enzymic process for separating the optical isomers of racemic 1,2-diols using lipase, U.S. Patent 5 231 027.Google Scholar
  28. Bosetti, A., Beilen, J. B. V., Preusting, H., Lageveen, R. G., and Witholt, B., 1992, Production of primary aliphatic alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme system, Enzyme Microb. Technol. 14: 702–708.Google Scholar
  29. Boyd, D., Sharma, N., Dorrity, M., Hand, M., Mcmordie, R., Malone, J., Porter, H., Dalton, H., Chima, J., and Sheldrake, G., 1993a, Structure and stereochemistry of ds-dihy-drodiol and phenol metabolites of bicyclic azaarenes from Pseudomonas putida UV4, J. Chem. Soc. Perkin. Trans. I: 9: 1065–1071.Google Scholar
  30. Boyd, D., Sharma, N., Stevenson, P., Chima, J., Gray, D., and Dalton, H., 1991, Bacterial oxidation of benzocycloalkanes to yield monol, diol, and triol metabolites, Tetrahedron Lett. 32: 3887–3890.Google Scholar
  31. Boyd, D. R., Sharma, N. D., Boyle, R., Malone, J. F., Chima, J., and Dalton, H., 1993b, Structures and stereochemical assignments of some novel chiral synthons derived from the biotransformation of 2,3-dihydrobenzofuran and benzofuran by Pseudomonas putida, Tetrahedron Asymm. 4: 1307–1324.Google Scholar
  32. Boyd, D. R., Sharma, N. D., Hand, M. V., Groocock, M. R., Kerley, N. A., Dalton, H., Chima, J., and Sheldrake, G. N., 1993c, Stereodirecting substituent effects during enzyme-catalyzed synthesis of cis-dihydrodiol metabolites of 1,4-disubstituted benzene substrates, J. Chem. Soc. Chem. Commun. 11: 974–976.Google Scholar
  33. Bradshaw, C. W., Fu, H., Shen, G. J., and Wong, C. H., 1992a, A Pseudomonas sp. alcoholdehydrogenase with broad substrate-specificity and unusual stereospecificity for organic synthesis, J. Org. Chem. 57: 1526–1532.Google Scholar
  34. Bradshaw, C. W., Lalonde, J. J., and Wong, C.-H., 1992b, Enzymatic synthesis of (R)-and (S)-l-deuterohexanol, Appl. Biochem. Biotechnol. 32: 15–24.Google Scholar
  35. Brand, J. M., Cruden, D. L., Zylstra, G. J., and Gibson, D. T., 1992, Stereospecific hy-droxylation of indan by Escherichia coli containing the cloned toluene dioxygenase genes from Pseudomonas putida FI, Appl. Env. Microbiol. 58: 3407–3409.Google Scholar
  36. Britton, L. N., and Markovetz, A. J., 1977, A novel ketone monooxygenase from Pseudomonas cepacia. Purification and properties, J. Biol. Chem. 252: 8561–8566.PubMedGoogle Scholar
  37. Bushell, M. E., 1983, Progress in Industrial Microbiology, Vol. 18: Microbial polysaccharides, Elsevier, Amsterdam.Google Scholar
  38. Chakrabarty, A. M., 1976, Plasmids in Pseudomonas, Ann. Rev. Genet. 10: 23–29.Google Scholar
  39. Chan, H. W., and Salazar, F. H., 1991, Cloning, expression and sequencing of an ester hydrolase gene in Escherichia coli, Patient EP 414 247.Google Scholar
  40. Cleasby, A., Garman, E., Egmond, M. R., and Batenburg, M., 1992, Crystallization and preliminary X-ray study of a lipase from Pseudomonas glumae, J. Mol. Biol. 224: 281–282.PubMedGoogle Scholar
  41. Connors, M. A., and Barnsley, E. A., 1982, Naphthalene plasmids in Pseudomonads, J. Bacteriol. 149: 1096–1101.PubMedGoogle Scholar
  42. Cozzone, A. J., 1993, ATP-dependent protein kinases in bacteria, J. Cell. Biochem. 51: 7–13.PubMedGoogle Scholar
  43. Davies, J. I., and Evans, W. C., 1964, Oxidative metabolism of naphthalene by soil Pseudomonads, Biochem. J. 91: 251–261.PubMedGoogle Scholar
  44. de Lorenzo, V., and Timmis, K. N., 1994, Analysis and construction of stable phenotypes in gram-negative bacteria with Tn-5-and Tn10-derived minitransposons, in: Methods in Enzymology, 235, (V. L. Clark and P. M. Bavoil, eds.), Academic Press, pp. 386-405.Google Scholar
  45. de Smet, M. J., 1983, A biotechnological approach to the synthesis of epoxides: Bioconversion of hydrocarbons by Pseudomonas oleovorans during growth in a multiphase system, Biotechnol. Bioeng. 25: 1161–1162.PubMedGoogle Scholar
  46. de Smet, M. J., Eggink, G., Witholt, B., Kingma, J., and Wynberg, H., 1983a, Characterization on intracellular inclusions formed by Pseudomonas oleovorans during growth on octane, J. Bacteriol. 154: 870–878.PubMedGoogle Scholar
  47. de Smet, M. J., Kingma, J., Wynberg, H., and Witholt, B., 1983b, Pseudomonas oleovorans as a tool in bioconversions of hydrocarbons: Growth morphology and conversion characteristics in different two-phase systems, Enzyme Microb. Technol. 5: 352–360.Google Scholar
  48. de Smet, M. J., Wijnberg, H., and Witholt, B., 1981, Synthesis of 1,2-epoxyoctane by Pseudomonas oleovorans during growth in a two phase system containing high concentrations of 1-octene, Appl. Env. Microbiol. 42: 811–816.Google Scholar
  49. Deamici, M., Demicheli, C., Molteni, G., Pitre, D., Carrea, G., Riva, S., Spezia, S., and Zetta, L., 1991, Chemoenzymatic synthesis of the 8 stereoisomeric muscarines, J. Org. Chem. 56: 67–72.Google Scholar
  50. den Dooren de Jong, L. E., 1926, PhD Thesis, Leiden University, The Netherlands.Google Scholar
  51. Deretic, V., Martin, D. W., Schurr, M. J., Mudd, M. H., Hibler, N. S., et al., 1993, Conversion to mucoidy in Pseudomonas aeruginosa, Biotechnology 11: 1133–1136.PubMedGoogle Scholar
  52. Drauz, K., and Waldmann, H., 1995, Enzyme Catalysis in Organic Synthesis, A Comprehensive Handbook, VCH Verlagsgesellschaft, Weinheim.Google Scholar
  53. Earhart, C. A., Hall, M. D., Michaude Soret, L., Que, L., Jr., and Ohlendorf, D. H., 1994, Crystallization of catechol-1,2 dioxygenase from Pseudomonas arvilla C-l, J. Mol. Biol. 236: 377–378.PubMedGoogle Scholar
  54. Effenberger, F., Horsch, B., Weingart, F., Ziegler, T., and Kuhner, S., 1991, Enzymecatalyzed synthesis of (R)-ketone-cyanohydrins and their hydrolysis to (R)-α-hydroxy-α-methyl-carboxylic acids, Tetrahedron Lett. 32: 2605–2608.Google Scholar
  55. Eggink, G., 1987, Thesis, University of Groningen, The Netherlands.Google Scholar
  56. Eggink, G., Engel, H., Meijer, W. G., Otten, J., Kingma, J., and Witholt, B., 1988, Alkane utilization in Pseudomonas oleovorans: Structure and function of the regulatory locus alkR, J. Biol. Chem. 263: 13400–13405.PubMedGoogle Scholar
  57. Endo, T., and Tamura, K., 1991, Process for producing R-(—)-mandelic acid and derivatives thereof, Patent EP 449648.Google Scholar
  58. Ensley, B. D., 1994, Biosynthesis of the textile dye indigo by a recombinant bacterium, Chimia 48: 491–492.Google Scholar
  59. Ensley, B. D., and Gibson, D. T., 1983, Naphthalene dioxygenase: Purification and properties of a terminal oxygenase component, J. Bacteriol. 155: 505–511.PubMedGoogle Scholar
  60. Ensley, B. D., Ratzkin, B. J., Osslund, T D., Simon, M. J., Wackett, L. P., and Gibson, D. T., 1983, Expression of naphthalene dioxygenase genes in Escherichia coli results in biosynthesis of indigo, Science 222: 167–169.PubMedGoogle Scholar
  61. Estell, D. A., 1993, Engineering enzymes for improved performance in industrial applications, J. Biotechnol. 28: 25–30.Google Scholar
  62. Evans, C., Roberts, S., Shoberu, K., and Sutherland, A., 1992, Potential use of carbocyclic nucleosides for the treatment of AIDS. Chemoenzymatic syntheses of the enantiomers of carbovir, J. Chem. Soc. Perkin Trans. 1: 589–592.Google Scholar
  63. Evans, C. T., Peterson, W., Choma, C., and Misawa, M., 1987, Biotransformation of phenylpyruvic acid to L-phenylalanine using a strain of Pseudomonas fluorescens ATCC 11250 with high transaminase activity, Appl. Microbiol. Biotechnol. 26: 305–312.Google Scholar
  64. Fa, Y. H., Kusel, J. P., and Demain, A. L., 1984, Dependence of betaine stimulation of vitamin B12 overproduction on protein synthesis, Appl. Environ. Microbiol. 47: 1067–10699.PubMedGoogle Scholar
  65. Faber, K., 1995, Biotransformations in Organic Chemistry, Springer Verlag, Berlin.Google Scholar
  66. Favre Bulle, O., Schouten, T., Kingma, J., and Witholt, B., 1991, Bioconversion of n-octane to octanoic acid by a recombinant Escherichia coli cultured in a two-liquid phase bio-reactor, Bio/Technology 9: 367–371.PubMedGoogle Scholar
  67. Fernandez-Valverde, M., Reglero, A., Martinez-Bianco, H., and Luengo, J. M., 1993, Purification of Pseudomonas putida actyl coenzyme A ligase active with a range of aliphatic and aromatic substrates, Appl. Env. Microbiol. 59: 1149–1154.Google Scholar
  68. Ferrero, M. A., Reglero, A., Martinez-Bianco, H., Fernandez-Valverde, M., and Luengo, J. M., 1991a, In vitro enzymatic synthesis of new penicillins containing keto acids as side chains, Antimicrob. Agents Chemother. 35: 1931–1932.PubMedGoogle Scholar
  69. Ferrero, O., Reglero, A., Martin-Villacorta, J., Martinez-Bianco, H., and Luengo, J. M., 1991b, Synthesis of 3-furylmethylpenicillin using an enzymatic procedure, FEMS Microbiol. Lett. 83: 1–6.Google Scholar
  70. Fetzner, S., and Linigens, F., 1994, Bacterial dehalogenases: Biochemistry, genetics, and biotechnological applications, Microbiol. Rev. 58: 641–685.PubMedGoogle Scholar
  71. Florent, J., 1986, Vitamins, in: Biotechnology, Vol. 4, (H.-J. Rehm and G. Reed, eds.), VCH Verlaggesellschaft, Weinheim, pp. 117–158.Google Scholar
  72. Forney, F. W., and Markovetz, A. J., 1969, An enzyme system for aliphatic methyl ketone oxidation, Biochem. Biophys. Res. Commun. 37: 31–38.PubMedGoogle Scholar
  73. Francalanci, F., Ricci, M., Cesti, P., and Venturello, C., 1993, Process for preparing L (—)-carnitine chloride, U.S. Patent 5 248 601.Google Scholar
  74. Frenken, L. G. J., Egmond, M. R., Batenburg, A. M., and Verrips, C. T., 1993, Pseudomonas glumae lipase: Increased proteolytic stability by protein engineering, Protein Eng. 6: 637–642.PubMedGoogle Scholar
  75. Fukagawa, M., Ono, H., Ishitani, Y., Tsumura, M., Iwani, M., and Kojo, H., 1992, Glutaryl-7ACA acylase, Patent EP 482 844.Google Scholar
  76. Fukuda, M., Nishi, T., Igarashi, M., Kondo, T., Takagi, M., and Yano, K., 1989, Degradation of ethylbenzene by Pseudomonas putida harboring OCT plasmid, Agric. Biol. Chem. 53: 3293–3299.Google Scholar
  77. Furakawa, K., Hayashida, S., and Taira, K., 1992, Biochemical and genetic basis for the degradation of polychlorinated biphenyls in soil bacteria, in: Pseudomonas: Molecular Biology and Biotechnology, (E. Galli, S. Silver, and B. Witholt, eds.), American Society for Microbiology, Washington D. C., pp. 259–267.Google Scholar
  78. Furuhashi, K., 1992, Biological routes to optically active epoxides, in: Chirality in Industry, (A. N. Collins, G. N. Sheldrake, and J. Crosby, eds.), John Wiley & Sons, London, pp. 167–186.Google Scholar
  79. Furuta, T., Takahashi, H., Shibasaki, H., and Kasuya, Y., 1992, Reversible stepwise mechanism involving a carbanion intermediate in the elimination of ammonia from L-histi-dine catalyzed by histidine ammonia-lyase, J. Biol. Chem. 267: 12600–12605.PubMedGoogle Scholar
  80. Gagnon, R., Grogan, G., Roberts, S. M., Villa, R., and Willetts, A. J., 1995, Enzymatic Baeyer-Villiger oxidations of some bicycle[2.2.1] heptan-2-ones using monoox-ygenases from Pseudomonas putida NCIMB 10007: Enantioselective preparation of a precursor of azadirachtin, J. Chem. Soc. Perkin Trans. 1: 1505–1511.Google Scholar
  81. Geary, P. J., and Haives, J. E., 1988, Microbial preparation of catechols, Patent EP 268 331.Google Scholar
  82. Geary, P. J., and Pryce, R. J., 1990, Pseudomonas putida cells for microbial production of catechols, Br. Patent 2 222 176.Google Scholar
  83. Gibson, D. T., 1991, The role of oxygenases in the microbial oxidation of aromatic compounds, Abstr. Pap. Am. Chem. Soc. 201: 46.Google Scholar
  84. Gibson, D. T., Resnick, S. M., Lee, K., Brand, J. M., Torok, D. S., Wackett, L. P., Schocken, M. J., and Haigler, B. E., 1995, Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp strain-9816-4, J. Bacterial. 177: 2615–2621.Google Scholar
  85. Gibson, D. T., and Subramanian, V., 1984, Microbial degradation of aromatic hydrocarbons, in: Microbial Degradation of Organic Compounds (D. T. Gibson, ed.), Marcel Dekker, New York, pp. 181–252.Google Scholar
  86. Glazer, A. N., and Nikaido, H., 1995, Microbial Biotechnology: Fundamentals of Applied Microbiology, W. H. Freeman, New York.Google Scholar
  87. Grogan, G., Roberts, S., Wan, P., and Willetts, A., 1993, Camphor-grown Pseudomonas putida, a multifunctional biocatalyst for undertaking Baeyer-Villiger monoox-ygenase-dependent biotransformations, Biotechnol. Lett. 15: 913–918.Google Scholar
  88. Grogan, G., Roberts, S., and Willetts, A., 1992, Biotransformation by microbial Baeyer-Villiger monooxygenases: stereoselective lactone formation in vitro by coupled enzyme systems, Biotechnol. Lett. 14: 1125–1130.Google Scholar
  89. Hagedorn, S. R., East, A. J., and Barer, S. J., 1989, Production of picolinic acid and pyridine products via Pseudomonas, U.S. Patent 4 859 592.Google Scholar
  90. Haigler, B. E., and Spain, J. C., 1991, Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways, Appl. Environ. Microbiol. 57: 3156–3162.PubMedGoogle Scholar
  91. Hailes, A. M., and Bruce, N. C., 1993, Biological synthesis of the analgesic hydro-morphone, an intermediate in the metabolism of morphine, by Pseudomonas putida MIO, Appl. Environ. Microbiol. 59: 2166–2170.PubMedGoogle Scholar
  92. Hansen, C., Fortnagel, P., and Wittich, R. M., 1992, Initial reactions in the mineralization of 2-sulfobenzoate by Pseudomonas sp RW611, FEMS Microbiol. Lett. 92: 35–40.Google Scholar
  93. Harayama, S., and Don, R. H., 1985, Catabolic plasmids: Their analysis and utilization in the manipulation of bacterial metabolic activities, Genet. Eng. 7: 283–307.Google Scholar
  94. Harayma, S., and Rekik, M., 1990, The meta cleavage operon of TOL degradative plasmid pWWO comprises 13 genes, Mol. Gen. Genet. 221: 113–120.Google Scholar
  95. Harayama, S., Rekik, M., and Timmis, K. N., 1986, Genetic analysis of a relaxed substrate specificity aromatic ring dioxygenase, toluate-l,2-dioxygenase, encoded by TOL plasmid pWWO of Pseudomonas putida, Mol. Gen. Genet. 202: 226–234.PubMedGoogle Scholar
  96. Hashimoto, Y., Endo, T., Tamura, K., and Hirata, Y., 1994, Process for producing optically active α-hydroxycarboxylic acid having a phenyl group, Patent EP 610 049.Google Scholar
  97. Hernandez, D., and Phillips, A. T., 1994, Ser-143 is an essential active site residue in histidine ammonia-lyase of Pseudomonas putida, Biochem. Biophys. Res. Commun. 201: 1433–1438.PubMedGoogle Scholar
  98. Hirose, J., Kimura, N., Suyama, A., Kobayashi, A., Hayashida, S., and Furukawa, K., 1994, Functional and structural relationship of various extradiol aromatic ring-cleavage dioxygenases of Pseudomonas origin, FEMS Microbiol. Lett. 118: 273–277.PubMedGoogle Scholar
  99. Hoeks, F., 1991, Process for the microbiological discontinuai preparation of L-carnitine, Patent EP 410 430.Google Scholar
  100. Hoeks, F., and Venetz, D., 1992, Process for the production of 6-hydroxynicotinic acid, U.S. Patent 5 151 351.Google Scholar
  101. Holloway, B., Escuadra, M., Morgan, A., Saffery, R., and Krishnapillai, V., 1992, New approaches to whole genome anlaysis of bacteria, FEMS. Microbiol. Lett. 100: 101–105.Google Scholar
  102. Hou, C. T., 1993, Screening of microbial esterases for asymmetric hydrolysis of 2-ethyl-hexyl butyrate, J. Ind. Microbiol. 11: 73–81.Google Scholar
  103. Hudlicky, T., Luna, H., Barbieri, G., and Kwart, L. D., 1988, Enantioselective synthesis through microbial oxidation of arenes. I. Efficient preparation of terpene and prostanoid synthons, J. Am. Chem. Soc. 110: 4735–4741.Google Scholar
  104. Hudlicky, T., Mandel, M., Rouden, J., Lee, R. S., Bachmann, B., Dudding, T., Yost, K.J., and Merola, J. S., 1994a, Microbial oxidation of aromatics in enantiocontrolled synthesis. 1. Expedient and general asymmetric synthesis of inositols and carbohydrates via an unusual oxidation of a polarized diene with potassium permanganate, J. Chem. Soc. Perkin. Trans. 1: 1553–1567.Google Scholar
  105. Hudlicky, T., Olivo, H. F., and McKibben, B., 1994b, Microbial oxidation of aromatics in enantiocontrolled synthesis. 3. Design of amino cyclitols (exo-nitrogenous) and total synthesis of (+)-lycoricidine via acylnitrosyl cycloaddition to polarized l-halo-l,3-cy-clohexadienes, J. Am. Chem. Soc. 116: 5108–5115.Google Scholar
  106. Hur, H. G., Sadowsky, M. J., and Wackett, L. P., 1994, Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786 (pHG-2) via an engineered metabolic pathway, Appl. Environ. Microbiol. 60: 4148–4154.PubMedGoogle Scholar
  107. Ichikawa, S., Yamamoto, K., and Matsuyama, K., 1988, Process for preparing a 7-ami-nocephalosporanic acid compound, U.S. Patent 4 774 179.Google Scholar
  108. Idemitsu, 1986, Production of sulfoxides having a sulfide bond at alpha-position from formaldehyde mercaptal using bacterium or fungus, J. Patent 61 195 694.Google Scholar
  109. Inagaki, M., Hiratake, J., Nishioka, T., and Oda, J., 1992, One-pot synthesis of optically active cyanohydrin acetates from aldehydes via lipase-catalyzed kinetic resolution coupled with in situ formation and racemization of cyanohydrins, J. Orig. Chem. 57: 5643–5649.Google Scholar
  110. Inoue, A., and Horikoshi, K., 1989, A Pseudomonas thrives in high concentrations of toluene, Nature 338: 264–266.Google Scholar
  111. Inoue, A., and Horikoshi, K., 1991, Estimation of solvent tolerance of bacteria by the solvent parameter Log P, J. Fermentation Bioeng. 71: 194–197.Google Scholar
  112. Irie, S., Doi, T., Yorifuyi, M., Takagi, M., and Yano, K., 1987a, Nucleotide sequencing and characterization of soluble benzene-oxidizing system from a strain of Pseudomonas putida, J. Bacteriol. 169: 5174–5179.PubMedGoogle Scholar
  113. Irie, S., Shirai, K., Doi, S., and Yorifuji, T., 1987b, Cloning of genes encoding oxidation of benzene in Pseudomonas putida and their expression in Escherichia coli and P. putida, Agric. Biol. Chem. 51: 1489–1493.Google Scholar
  114. Ishikawa, T., Watabe, K., Mukohara, Y., Kobayashi, S., and Nakamura, H., 1993, Microbial conversion of DL-5-substituted hydantoins to the corresponding L-amino-acids by Pseudomonas sp. strain NS671, Bioscience Biotechnol. Biochem. 57: 982–986.Google Scholar
  115. Ishiwata, K. I., Fukuhara, M., Shimada, M., Makiguchi, N., and Soda, K., 1990, Enzymic production of L-tryptophan from DL-serine and indole by a coupled reaction of tryptophan synthase and amino acid racemase, Biotechnology Appl. Biochem. 12: 141–149.Google Scholar
  116. Itoh, H., Sato, T., and Izumori, K., 1995, Preparation of D-psicose from D-fructose by immobilized D-tagatose 3-epimerase, J. Fermentation Bioeng. 80: 101–103.Google Scholar
  117. Jacobs, M. H., Van den Wijngaard, A. J., Pentenga, M., and Janssen, D. B., 1991, Characterization of the epoxide hydrolase from an epichlorohydrin-degrading Pseudomonas sp, Eur.J. Biochem. 202: 1217–1222.PubMedGoogle Scholar
  118. Jaeger, K. E., and Wohlfarth, S., 1993, Bacterial lipases: Biochemistry, molecular genetics, and applications in biotechnology, Bioengineering 9: 39–46.Google Scholar
  119. Janssen, D. B., Pries, F., and Vanderploeg, J. R., 1994, Genetics and biochemistry of dehalogenating enzymes, Annu. Rev. Microbiol. 48: 163–191.PubMedGoogle Scholar
  120. Jenkins, R. O., Stephens, G. M., and Dalton, H., 1987, Production of toluene cis-glycol by Pseudomonas putida in glucose batch-fed culture, Biotechnol. Bioeng. 29: 873–883.PubMedGoogle Scholar
  121. Johnson, B. F., and Mondello, F. J., 1991, Biological and chemical method for hydroxylating 4-substituted biphenyls and products obtained therefrom, U.S. Patent 4 981 793.Google Scholar
  122. Johnston, J. B., and Renganathan, V., 1987, Production of substituted catechols from substituted benzenes by a Pseudomonas species, Enzyme Microb. Technol. 9: 706–708.Google Scholar
  123. Johnstone, S. L., Phillips, G. T., Robertson, B. W., Watts, P. D., Bertola, M. A., Roger, H. S., and Marx, A. F., 1987, Stereoselective synthesis of S-(—)-β-blockers via microbially produced epoxide intermediates, in: Biocatalysis in Organic Media, (C. Laane, J. Tramper, and M. D. Lilly, eds.), Elsevier, Amsterdam, pp. 387–392.Google Scholar
  124. Kamphuis, J., Meijer, E. M., Boesten, W. H., Sonke, T., van den Tweel, W. J., and Schoemaker, H. E., 1992, New developments in the synthesis of natural and unnatural amino acids, Ann. N.Y. Acad. Sci. 672: 510–527.PubMedGoogle Scholar
  125. Kanerva, L. T., Rahiala, K., and Sundholm, O., 1994, Optically active cyanohydrins and enzyme catalysis, Biocatalysis 10: 169–180.Google Scholar
  126. Katopodis, A. G., Wimalasena, K., Lee, J., and May, S. W., 1984, Mechanistic studies on non-heme iron monooxygenase catalysis: Epoxidation, aldehyde formation, and demethylation by the ω-hydroxylation system of Pseudomonas oleovorans., J. Am. Chem. Soc. 106: 7928–7935.Google Scholar
  127. Kawamori, M., Hashimoto, Y., Katsumata, R., Okachi, R., and Takayama, K., 1983, Enzymatic production of amoxicillin by beta-lactamase-deficient mutants of Pseudomonas melanogenum KY 3987, Agric. Biol. Chem. 47: 2503–2509.Google Scholar
  128. Kelly, C. T., and Fogarty, W. M., 1983, Microbial alpha-glucosidases, Process Biochem. 18: 6–12.Google Scholar
  129. Kerkhoffs, P. L., and Boesten, W. H. J., 1989, Process for the preparation of L-α-amino acid and D-α-amino acid amide, U.S. Patent 4 880 737.Google Scholar
  130. Kiener, A., 1992a, Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids, Angew. Chem. Int. Ed. Engl. 31: 774–775.Google Scholar
  131. Kiener, A., 1992b, Microbial oxidation of alkyl groups in heterocycles, Patent EP466115.Google Scholar
  132. Kiener, A., 1992c, Mikrobiologisches Verfahren zur terminalen Hydroxylierung von Ethylgruppen an aromatischen 5-oder 6-Ring-Heterocyclen, Patent EP 502524.Google Scholar
  133. Kiener, A., 1995, Biosynthesis of functionalized aromatic N-heterocycles, Chemtech Sept: 31-35.Google Scholar
  134. Kieslich, K., 1991, Biotransformations of industrial use, Acta Biotechnol. 11: 559–570.Google Scholar
  135. Kim, K., Hwang, K., Choi, K., Kang, J., Yoo, O., and Sush, S., 1993, Crystallization and preliminary X-ray crystallographic analysis of arylesterase from Pseudomonas fluorescens, Protein Struct. Functional Genet. 15: 213–215.Google Scholar
  136. Kim, K. K., Hwang, K. Y., Jeon, H. S., Kim, S., Sweet, R. M., Yang, C. H., and Suh, S. W., 1992, Crystallization and preliminary X-ray crystallographic analysis of lipase from Pseudomonas cepacia, J. Mol. Biol. 227: 1258–1262.PubMedGoogle Scholar
  137. Kloosterman, M., Elferink, V. H., van Lersel, J., Roskam, J. H., and Meijer, E. M., 1988, Upases in the preparation of β-blockers, Trends Biotechnol. 6: 251–256.Google Scholar
  138. Kohler, H. P. E., Maarel, M. J. E. C. V. d., and Kohler-Staub, D., 1993, Selection of Pseudomonas species strain HBP1 Prp for metabolism of 2-propylphenol and elucidation of the degradative pathway, Appl. Environ. Microbiol. 59: 860–866.PubMedGoogle Scholar
  139. Kok, M., Eggink, G., Witholt, B., Owen, D. J., and Shapiro, J., 1984, Transposable elements as cloning vectors. Characterization of the Pseudomonas oleovorans alk-regulon., in: Progress in Industrial Microbiology (E. H. Houwink and R. R. Van der Meer, eds.), Elsevier Scientific, Amsterdam, pp. 373–380.Google Scholar
  140. Kok, M., Oldenhuis, R., van der Linden, M. P. G., Meulenberg, C. H. C., Kingma, J., and Witholt, B., 1989a, The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde-dehydrogenase, J. Biol. Chem. 264: 5442–5451.PubMedGoogle Scholar
  141. Kok, M., Oldenhuis, R., van der Linden, M. P. G., Raatjes, P., Kingma, J., and van Lelyveld, P. H., 1989b, The Pseudomonas oleovorans alkane-hydroxylase gene: Sequence and expression, J. Biol Chem. 264: 5435–5441.PubMedGoogle Scholar
  142. Kok, M., Shaw, J. P., and Harayama, S., 1992, Comparison of two hydrocarbon-monoox-ygenases of Pseudomonas putida, in: Pseudomonas. Molecular Biology, and Biotechnology (E. Galli, S. Silver, and B. Witholt, eds.), American Society for Microbiology, Washington D.C., pp. 214–222.Google Scholar
  143. Konishi, M., Tornita, K., Oka, M., and Numata, K.-L., 1992, Peptide antibiotics. U.S. Patent 5 079 148.Google Scholar
  144. Kordel, M., Hofmann, B., Schomburg, D., and Schmid, R. D., 1991, Extracellular lipase of Pseudomonas sp. strain ATCC 21808: Purification, characterization, crystallization, and preliminary X-ray diffraction data, J. Bacteriol. 173: 4836–4841.PubMedGoogle Scholar
  145. Krell, H. W., and Rasor, P., 1993, Microbial esterase for the enantioselective cleavage of 1-arylalkyl esters, Patent WO 9 324 648.Google Scholar
  146. Kropp, K. G., Goncalves, J. A., Andersson, J. T., and Fedorak, P. M., 1994, Bacterial transformations of benzothiophene and methylbenzothiophenes, Environ. Science Technol. 28: 1348–1356.Google Scholar
  147. Kula, M. R., and Peters, J., 1993, New ketonic ester reductase, its preparation and use for enzymic redox reactions, Patent WO 9 318 138.Google Scholar
  148. Kulla, G. H., 1991, Enzymatic hydroxylations in industrial application, Chimia 86: 295–323.Google Scholar
  149. Kunz, D. A., and Chapman, P. J., 1981, Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: Evidence for new functions of the TOL (pWWO) plasmid, J. Bacteriol. 146: 179–191.PubMedGoogle Scholar
  150. Kunz, D. A., Ribbons, D. W., and Chapman, P. J., 1981, Metabolism of allyglycine and cis-crotylglycine by Pseudomonas putida (arvilla) mt-2 harboring a TOL plasmid, J. Bacteriol. 148: 72–82.PubMedGoogle Scholar
  151. Kusel, J. P., Fa, Y. H., and Demain, A. L., 1984, Betaine stimulation of vitamin B12 biosynthesis in Pseudomonas denitrificans may be mediated by an increase in activity of δ-aminolaevulinic acid synthetase, J. Gen. Microbiol. 130: 835–841.Google Scholar
  152. Kusunose, M., Ichihara, K., Kusunose, E., Nozaka, J., and Matsumoto, J., 1967, The possible role of flavin on the hydroxylation of hydrocarbon by bacterial enzyme system, Agric. Biol. Chem. 31: 990–992.Google Scholar
  153. Kutsuki, H., Sawa, I., Hasegawa, J., and Watanabe, K., 1986, Asymmetric hydrolysis of (DL)-l-acyloxy-2-halo-l-phenylethanes with upases, Agric. Biol. Chem. 50: 2369–2373.Google Scholar
  154. Lageveen, R. G., Huisman, G. W., Preusting, H., Ketelaar, P., Eggink, G., and Witholt, B., 1988, Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly (R)-3-hydroxyalkanoates and poly (R)-3-hy-droxyalkenoates, Appl. Environ. Microbiol. 54: 2924–2934.PubMedGoogle Scholar
  155. Lapointe, G., Viau, S., Leblanc, D., Robert, N., and Morin, A., 1994, Cloning, sequencing, and expression in Escherichia coli of the D-hydantoinase gene from Pseudomonas putida and distribution of homologous genes in other microorganisms, Appl. Environ. Microbiol. 60: 888–895.PubMedGoogle Scholar
  156. Larson, S., Day, J., Greenwood, A., Oliver, J., Rubingh, D., and McPherson, A., 1991, Preliminary investigation of crystals of the neutral lipase from Pseudomonas fluorescens, J. Mol. Biol. 222: 21–22.PubMedGoogle Scholar
  157. Layh, N., Stolz, A., Forster, S., Effenberger, F., and Knackmuss, H. J., 1992, Enantioselective hydrolysis of o-acetylmandelonitrile to o-acetylmandelic acid by bacterial nitrilases, Arch. Microbiol. 158: 405–411.Google Scholar
  158. Lee, K., Brand, J. M., and Gibson, D. T., 1995, Stereospecific sulfoxidation by toluene and naphthalene dioxygenases, Biochem. Biophys. Res. Commun. 212: 9–15.PubMedGoogle Scholar
  159. Lee, M., and Chandler, A. C., 1941, A study of the nature, growth, and control of bacteria in cutting compounds, J. Bacteriol. 41: 373–386.PubMedGoogle Scholar
  160. Lenn, M. J., and Knowles, C. J., 1994, Production of optically active lactones using cyclo-alkanone oxygenases, Enzyme Microb. Technol. 16: 964–969.Google Scholar
  161. Lenz, R. W., Kim, Y. B., and Fuller, R. C., 1992, Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism, FEMS Microbiol. Rev. 103: 207–214.Google Scholar
  162. Lim, Y. H., Yokoigawa, K., Esaki, N., and Soda, K., 1993, A new amino acid racemase with threonine α-epimerase activity from Pseudomonas putida: Purification and characterization, J. Bacteriol. 175: 4213–4217.PubMedGoogle Scholar
  163. Mader, R. A., and Tautvydas, K. J., 1990, Biological production of novel cyclohexa-dienediols, Patent EP 400 779.Google Scholar
  164. Marquardt, R., Then, J., Braeu, B., Praeve, P., and Woehner, G., 1988, Production of phenylalanine by recombinant bacteria, Patent EP 289 846.Google Scholar
  165. Marques, A. M., Estanol, I., Alsina, J. M., Fuste, C., and Simon-Pujol, D., 1986, Production and rheological properties of the extracellular polysaccharide synthesized by Pseudomonas sp. strain EPS-5028, Appl. Environ. Microbiol. 52: 1221–1223.PubMedGoogle Scholar
  166. Martinez-Bianco, H., Reglero, A., Martin-Villacorta, J., and Luengo, J. M., 1990, Design of an enzymatic hybrid system: A useful strategy for the biosynthesis of benzylpenicillin in vitro, FEMS Microbiol. Rev. 72: 113–116.Google Scholar
  167. Martinez-Bianco, H., Reglero, A., and Luengo, J. M., 1991, In vitro synthesis of different naturally occurring, semisynthetic and synthetic penicillins using a new and effective enzymatic coupled system, J. Antibiotics 44: 1252–1258.Google Scholar
  168. Martins, L. O., and Sa-Correia, I., 1991, Alginate biosynthesis in mucoid recombinants of Pseudomonas aeruginosa overproducing GDP-mannose dehydrogenase, Enzyme Microb. Technol. 13: 385–389.PubMedGoogle Scholar
  169. Maruo, S., Yamamoto, H., Toda, M., Tachikake, N., Kojima, M., and Ezure, Y., 1993, Enzymic synthesis of high purity maltotetraose using moranoline (1-deoxyno-jirimycin), Biosci. Biotechnol Biochem. 57: 499–501.PubMedGoogle Scholar
  170. Masutomo, S., Inoue, A., Kumagai, K., Murai, R., and Mitsuda, S., 1995, Enantioselective hydrolysis of (R,S)-2-isopropyl-4′-chlorophenylacetonitrile by Pseudomonas sp B21C9, Biosc. Biotechnol Biochem. 59: 720–722.Google Scholar
  171. Mathews, F. S., Chen, Z. W., Bellamy, H. D., and Mclntire, W. S., 1991, Three-dimensional structure of p-cresol methylhydroxylase (flavocytochrome c) from Pseudomonas putida at 3.0-Å resolution, Biochemistry 30: 238–247.PubMedGoogle Scholar
  172. Matsubara, M., Masukawa, T., Adachi, N., Fukuta, M., and Kariya, M., 1991, Process for producing cis-4,5-dihydro-4,5-dihydroxyphthalic acid, U.S. Patent 5 037 748.Google Scholar
  173. Maxwell, P. C., 1988, Process for the production of muconic acid, U.S. Patent 4 731 328.Google Scholar
  174. May, S. W., and Abbott, B. J., 1972, Enzymatic epoxidation. I. Alkane epoxidation by the (ω-hydroxylation system of Pseudomonas oleovorans, Biochem. Biophys. Res. Commun. 48: 1230–1234.PubMedGoogle Scholar
  175. May, S. W., and Katopodis, A. G., 1986, Oxygenation of alcohol and sulfide substrates by a prototypical non-heme iron monooxygenase: Catalysis and biotechnological potential, Enzyme Microb. Technol. 8: 17–21.Google Scholar
  176. May, S. W., and Swartz, R. D., 1974, Stereoselective epoxidation of octadiene catalyzed by an enzyme system of Pseudomonas oleovorans, J. Am. Chem. Soc. 96: 4031–4032.PubMedGoogle Scholar
  177. McIntire, W., Hopper, D. J., Craig, J. C., Everhart, E. T., Webster, R. V., Causer, M. J., and Singer, T. P., 1984, Stereochemistry of l-(4′-hydroxyphenyl)ethanol produced by hydroxylation of 4-ethylphenol by p-cresol methylhydroxylase, Biochem. J. 224: 617–621.PubMedGoogle Scholar
  178. Mclntire, W., Hopper, D. J., and Singer, T. P., 1985, p-Cresol methylhydroxylase. Assay and general properties, Biochem. J. 228: 325–335.Google Scholar
  179. McKenna, E. J., and Coon, M. J., 1970, Enzymatic (ω-oxidation. IV. Purification and properties of the (ω-hydroxylase of Pseudomonas oleovorans, J. Biol. Chem. 245: 3882–3889.PubMedGoogle Scholar
  180. McKibben, B. P., Barnosky, G. S., and Hudlicky, T., 1995, Unusual dehalogenation of a bridgehead halide—biocatalytic conversion of halocyclohexadiene-cis-diols to the trans-iosmers and synthesis of optically pure cyclohexadiene-trans-diols, Synlett: 8: 806–808.Google Scholar
  181. Mermod, N., Harayama, S., and Timmis, K. N., 1986, New route to bacterial production of indigo, Bio/Technology 4: 321–324.Google Scholar
  182. Mermod, N., Ramos, J. L., Lehrbach, P. R., and Timmis, K. N., 1986, Vector for regulated expression of cloned genes in a wide range of gram-negative bacteria, J. Bacteriol. 167: 447–454.PubMedGoogle Scholar
  183. Misset, O., Gerritse, G., Jaeger, K. E., Winkler, U., Colson, C., Schanck, K., Lesuisse, E., Dartois, V., Blaauw, M., Ransac, S., and Dijkstra, B. W., 1994, The structure-function relationship of the upases from Pseudomonas aeruginosa and Bacillus subtilis, Protein Eng. 7: 523–529.PubMedGoogle Scholar
  184. Mitsuda, S., Matsuo, N., and Hirohara, H., 1991, Process for producing optically active benzyl alcohol compounds, U.S. Patent 4 985 365.Google Scholar
  185. Morin, A., Hummel, W., Schuette, H., and Kula, M. R., 1986, Characterization of hydantoinase from Pseudomonas fluorescens strain DSM 84, Biotechnol. Appl. Biochem. 8: 564–574.PubMedGoogle Scholar
  186. Morin, A., Leblanc, D., Paleczek, A., and Hummel, W., 1990, Comparison of seven microbial D-hydantoinases, J. BiotechnoL 16: 37–48.Google Scholar
  187. Morris, V. J., 1992, Bacterial polysaccharides, Agro Food Ind. Hi-Tech 3: 3–8.Google Scholar
  188. Motosugi, K., Esaki, N., and Soda, K., 1984, Enzymatic preparation of D-and L-lactic acid from racemic 2-chloropropionic acid, Biotechnol. Bioeng. 26: 805–806.PubMedGoogle Scholar
  189. Murakami, N., 1993, Method for the preparation of an optically active 2-substituted carboxylic acid, U.S. Patent 5 238 828.Google Scholar
  190. Murdock, D., Ensley, B. D., Serdar, C., and Thalen, M., 1993, Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli, Bio/Technology 11: 381–385.PubMedGoogle Scholar
  191. Nagasawa, T., Hosono, H., Ohkishi, H., Tani, Y., and Yamada, H., 1983a, Synthesis of D-cysteine-related amino acids by 3-chloro-D-alanine chloride-lyase of Pseudomonasputida CR 1-1, Biochem. Biophys. Res. Commun. 111: 809–816.PubMedGoogle Scholar
  192. Nagasawa, T., Hosono, H., Ohkishi, H., and Yamada, H., 1983b, Synthesis of S-(carboxymethyl)-D-cysteine by 3-chloro-D-alanine chloride-lyase of Pseudomonas putida CR 1-1, Appl. Biochem. Biotechnol. 8: 481–489.PubMedGoogle Scholar
  193. Nagasawa, T., Hosono, H., Yamamo, H., Ohkishi, H., Tani, Y., and Tamada, H., 1983c, Synthesis of D-cysteine from a racemate of 3-chloroalanine by phenylhydrazine-treated cells of Pseudomonas putida CR 1-1, Agric. Biol. Chem. 47: 861–868.Google Scholar
  194. Nagasawa, T., Shimizu, H., and Yamada, H., 1993, The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acry-lamide, Appl. Microbiol. Biotechnol. 40: 189–195.Google Scholar
  195. Nakayama, K., Honda, H., Ogawa, T., Ozawa, T., and Ohta, T., 1988, Method for producing carnitine, L-carnitineamide hydrolase and method for producing same, Br. Patent 2 195 630.Google Scholar
  196. Nanba, H., Yamada, Y., Takano, M., Ikenaka, Y., and Takahashi, S., 1992, Process for producing D-α-amino acid, Patent WO 9 210 579.Google Scholar
  197. Noble, M. E. M., Cleasby, A., Johnson, L. N., Egmond, M. R., and Frenken, L. G. J., 1994, Analysis of the structure of Pseudomonas glumae lipase, Protein Eng. 7: 559–562.PubMedGoogle Scholar
  198. Olivieria, R., Eletti Bianchi, G., Fascetti, E., and Centini, F., 1985, Process for the preparation of L-α-amino acids, Patent EP 152 977.Google Scholar
  199. Onda, M., Motosugi, K., and Nakajima, H., 1990, A new approach for enzymatic synthesis of D-3-chlorolactic acid from racemic 2,3-dichloropropionic acid by halo-acid dehy-drogenase, Agr. Biol. Chem. 54: 3031–3033.Google Scholar
  200. Owen, D. J., Eggink, G., Hauer, B., Kok, M., Yang, Y. L., and Shapiro, J. A., 1984, Physical structure, genetic content, and expression of the alkBAC operon, Mol. Gen. Genet. 197: 373–383.PubMedGoogle Scholar
  201. Patel, R. N., Banerjee, A., Ko, R. Y., Howell, J. M., Li, W. S., Comezoglu, F. T., Partyka, R. A., and Szarka, L., 1994, Enzymatic preparation of (3R-cis)-3-(acetyloxy)-4-phenyl-2-azetidinone-a taxol side-chain synthon, Biotechnol. Appl. Biochem. 20: 23–33.PubMedGoogle Scholar
  202. Patel, R. N., Liu, M., Banerjee, A., and Szarka, L. J., 1992, Stereoselective enzymatic hydrolysis of (exo,exo)-7-oxabicyclo[2.2.1]heptane-2,3-dimethanol diacetate ester in a biphasic system, Appl. Microbiol. Biotechnol. 37: 180–183.Google Scholar
  203. Pedragosa-Moreau, S., Archelas, A., and Furstoss, R., 1993, Microbiological transformations. 28. Enantiocomplementary epoxide hydrolyses as a preparative access to both enantiomers of styrene oxide, J. Org. Chem. 58: 5533–5536.Google Scholar
  204. Peterson, J. A., Kusunose, M., Kusunose, E., and Coon, M. J., 1967, Enzymatic (ω-oxidatio-n. II. Function of rubredoxin as the electron carrier in ω-hydroxylation, J. Biol. Chem. 242: 4334–4340.PubMedGoogle Scholar
  205. Philips, G. T., Robertson, B. W., Bertola, M. A., Koger, H. S., Marx, A. F., and Watts, P. D., 1986a, Arylglycidyl ethers and 3-substituted l-alkylamino-2-propanols, Patent EP 193227.Google Scholar
  206. Phillips, G. T., Robertson, B. W., Bertola, M. A., Koger, H. S., Marx, A. F., and Watts, P. D., 1986b, 4-(2-Methoxyethyl)phenylglycidyl ether and metropolol preparation by stereo-selective microbiological epoxidation of corresponding phenylallyl ether, Patent EP 193 228.Google Scholar
  207. Phillips, G. T., Bertola, M. A., Marx, A. F., and Roger, H. S., 1988, Process for the preparation of esters of 4-(2,3-epoxypropoxy)phenylacetic acid and 4-(2-hydroxy-3-isopropylaminopropoxy)-phenylacetic acid and/or atenolol in stereospecific form, Patent EP 256586.Google Scholar
  208. Powlowski, J., Sahlman, L., and Shingler, V., 1993, Purification and properties of the physically associated meta-cleavage pathway enzymes 4-hydroxy-2-ketovalerate al-dolase and aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600, J. Bacteriol. 175: 377–385.PubMedGoogle Scholar
  209. Ramos, J. L., Diaz, E., Dowling, D., Delorenzo, V., Molin, S., Ogara, F., Ramos, C., and Timmis, K. N., 1994, The behavior of bacteria designed for biodegradation, Bio/Technology 12: 1349–1356.PubMedGoogle Scholar
  210. Ramos, J. L., Duque, E., Huertas, M. J., and Haidour, A., 1995, Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons, J. Bacteriol. 177: 3911–3916.PubMedGoogle Scholar
  211. Reeve, C. D., Carver, M. A., and Hopper, D. J., 1989, The purification and characterization of 4-ethylphenol methylenehydroxylase, a flavocytochrome from Pseudomonas putida JD1, Biochem. J. 263: 431–437.PubMedGoogle Scholar
  212. Reeve, C. D., Carver, M. A., and Hopper, D. J., 1990, Stereochemical aspects of the oxidation of 4-ethylphenol by the bacterial enzyme 4-ethylphenol methylenehydroxylase, Biochem. J. 269: 815–819.PubMedGoogle Scholar
  213. Reichlin, F., and Köhler, H. P. E., 1994, Pseudomonas sp. strain HBP1 prp degrades 2-iso-propylphenol (ortho-cumenol) via meta cleavage, Appl. Environ. Microbiol. 60: 4587–4591.PubMedGoogle Scholar
  214. Reineke, W., 1986, Construction of bacterial strains with novel degradative capabilities for chloroaromatics, J. Basic Microbiol. 26: 551–567.PubMedGoogle Scholar
  215. Resnick, S. M., Torok, D. S., and Gibson, D. T., 1993, Oxidation of carbazole to 3-hy-droxycarbazole by naphthalene 1,2-dioxygenase and biphenyl 2,3-dioxygenase, FEMS Microbiol. Lett. 13: 297–302.Google Scholar
  216. Resnick, S. M., Torok, D. S., Lee, K., Brand, J. M., and Gibson, D. T., 1994, Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene di-oxygenase and toluene dioxygenase, Appl. Environ. Microbiol 60: 3323–3328.PubMedGoogle Scholar
  217. Rhee, H. L., Murata, K., and Mimura, A., 1987, Formation of the herbicide, δ-aminol-evulinate, from L-alanine and 4,5-dioxovalerate by Pseudomonas riboflavina, Agric. Biol. Chem. 51: 1701–1702.Google Scholar
  218. Roberts, S. M., and Willetts, A. J., 1993, Development of the enzyme-catalyzed Baeyer-Villiger reaction as a useful technique in organic synthesis, Chirality 5: 334–337.Google Scholar
  219. Roberts, S. N., Turner, N. J., Willets, A. J., and Turner, M. K., 1995, Introduction to Biocatalysis Using Enzymes and Microorganisms, Cambridge University Press, Cambridge.Google Scholar
  220. Robinson, D. S., 1964, Oxidation of selected alkanes and related compounds by a Pseudomonas strain, Anton Leeuwenhoek 30: 303–316.Google Scholar
  221. Roise, D., Soda, K., Yagi, T., and Walsh, C. T., 1984, Inactivation of the Pseudomonas striata broad specificity amino acid racemase by D and L isomers of β-substituted alanines: Kinetics, stoichiometry, active site peptide, and mechanistic studies, Biochemistry 23: 5195–5201.PubMedGoogle Scholar
  222. Romanov, V., and Hausinger, R. P., 1994, Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro-and 2-chlo-robenzoate, J. Bacteriol. 176: 3368–3374.PubMedGoogle Scholar
  223. Ruettinger, R. T., Griffith, G. R., and Coon, M. J., 1977, Characterization of the ω-hydro-xylase of Pseudomonas oleovorans as a non-heme iron protein, Arch. Biochem. Biophys. 183: 528–537.PubMedGoogle Scholar
  224. Ruettinger, R. T., Olson, S. T., Boyer, R. F., and Coon, M. J., 1974, Identification of the (ω-hydroxylase of Pseudomonas oleovorans as a non-heme iron protein requiring phospholipid for catalytic activity, Biochem. Biophys. Res. Commun. 57: 1011–1017.PubMedGoogle Scholar
  225. Rustemov, S. A., Golovleva, L. A., Alieva, R. M., and Baskunov, B. P., 1992, New pathways of styrene oxidation by Pseudomonas putida culture, Mikrobiol. 61: 5–10.Google Scholar
  226. Saftic, S., Fedorak, P. M., and Andersson, J. T., 1992, Diones, sulfoxides, and sulfones from the aerobic cometabolism of methylbenzothiophenes by Pseudomonas strain BT1, Environ. Sic. Technol. 26: 1759–1764.Google Scholar
  227. Sakashita, K., Nakamura, T., and Watanabe, I., 1993, Process for producing L-amino acids, U.S. Patent 5 215 897.Google Scholar
  228. Sano, K., Yokozeki, K., Tamura, F., Yasuda, N., Noda, I., and Mitsugi, K., 1977, Microbial conversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid to L-cysteine and L-cystine: Screening of microorganisms and identification of products, Appl. Environ. Microbiol. 34: 806–810.PubMedGoogle Scholar
  229. Schoemaker, H. E., Boesten, W. H. J., Kaptein, B., Hermes, H. F. M., Sonke, T., Broxterman, Q. B., Vandentweel, W. J. J., and Kamphuis, J., 1992, Chemoenzymatic synthesis of amino acids and derivatives, Pure Appl. Chem. 64: 1171–1175.Google Scholar
  230. Schofield, J. A., 1989, Biochemical process to produce catechol or 1,2-dihydroxy-cyclo-hexa-3,5-diene compounds, U.S. Patent 4 863 851.Google Scholar
  231. Schurr, M. J., Martin, D. W., Mudd, M. H., and Deretic, V., 1994, Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: Functional analysis in a heterologous host and role in the instability of mucoidy, J. Bacteriol. 176: 3375–3382.PubMedGoogle Scholar
  232. Schwartz, R. D., 1973, Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans, Appl. Microbiol. 25: 574–577.PubMedGoogle Scholar
  233. Schwartz, R. D., and McCoy, C. J., 1973, Pseudomonas oleovorans hydroxylation-epoxidation system: Additional strain improvements, Appl. Microbiol. 26: 217–218.PubMedGoogle Scholar
  234. Senuma, M., Otsuki, O., Sakata, N., Furui, M., and Tosa, T., 1989, Industrial production of D-aspartic acid and L-alanine from DL-aspartic acid using a pressurized column reactor containing immobilized Pseudomonas dacunhae cells, J. Fermentation Bioeng. 67: 233–237.Google Scholar
  235. Serdar, C. M., Murdock, D. C., and Ensley, B. D., Jr., 1992, Enhancement of naphthalene dioxygenase activity during microbial indigo production, U.S. Patent 5 173 425.Google Scholar
  236. Sheldrake, G. N., 1992, Biologically derived arene cis-dihydrodiols as synthetic building blocks, in: Chirality in Industry (A. N. Collins, G. N. Sheldrake, and J. Crosby, eds.), John Wiley & Sons, London, pp. 127–138.Google Scholar
  237. Shimizu, H., Funita, C., and Watanabe, I., 1993, Process for preparing glycine from glycinonitrile, U.S. Patent 5 238 827.Google Scholar
  238. Shimizu, S., Kim, J. M., Shinmen, Y., and Yamada, H., 1986, Evaluation of two alternative metabolic pathways for creatinine degradation in microorganisms, Arch. Microbiol. 145: 322–328.Google Scholar
  239. Shimizu, S., and Yamada, H., 1991, Microbial carbonyl reductases—their diversity and application to the synthesis of optically active alcohols, J. Syn. Org. Chem. Japan 49: 52–70.Google Scholar
  240. Shingler, V., Franklin, F. C. H., Tsuda, M., Holroyd, D., and Bagdasarian, M., 1989, Molecular analysis of plasmid-encoded phenol hydroxylase from Pseudomonas CF600, J. Gen. Microbiol 135: 1083–1092.PubMedGoogle Scholar
  241. Shipston, N. F., Lenn, M. J., and Knowles, C. J., 1992, Enantioselective whole cell and isolated enzyme catalyzed Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2-en-6-one, J. Microbiol. Methods 15: 41–52.Google Scholar
  242. Soberonchavez, G., and Palmeros, B., 1994, Pseudomonas lipases: Molecular genetics and potential industrial applications, Crit. Rev. Microbiol 20: 95–105.Google Scholar
  243. Stanier, R. Y., Palleroni, N. J., and Doudoroff, M., 1966, The aerobic Pseudomonads: A taxonomic study, J. Gen. Microbiol. 43: 159–271.PubMedGoogle Scholar
  244. Steinbuchel, A., and Valentin, H. E., 1995, Diversity of bacterial polyhydroxyalkanoic acids, FEMS Microbiol. Lett. 128: 219–228.Google Scholar
  245. Stephens, G. M., Sidebotham, J. M., Mann, N. Y., and Dalton, H., 1989, Cloning and expression in Escherichia coli of the toluene dioxygenase gene from Pseudomonas putida NCIB11767, FEMS Microbiol. Lett. 57: 295–300.Google Scholar
  246. Stieglitz, B., Linn, W. J., Jobst, W., Fried, K. M., and Fallon, R. J., 1992, Process for producing enantiomers of 2-aryl-alkanoic acids, Patent WO 9 201 062.Google Scholar
  247. Sunjic, V., and Gelo, M., 1995, Chemoenzymic process for production of S-fen-propimorph, Patent EP 645 458.Google Scholar
  248. Sutherland, I. W., 1990, The properties and potential of microbial exopolysaccharides, Chimica Oggi 8: 9–14.Google Scholar
  249. Sutherland, I. W., 1991, Biotechnology of Microbial Exopolysaccharides, Cambridge University Press, Cambridge.Google Scholar
  250. Sutherland, I. W., Conti, E., Flaibani, A., and O’Regan, M., 1994, Alginate from Pseudomonas fluorescens and P. putida: Production and properties, Microbiology 140: 1125–1132.Google Scholar
  251. Suye, S.-I., Kawagoe, M., and Inuta, S., 1992, Enzymatic production of L-alanine from malic acid with malic enzyme and alanine dehydrogenase with coenzyme regeneration, Can. J. Chem. Eng. 70: 306–312.Google Scholar
  252. Suye, S. I., Yokoyama, S., and Obayashi, A., 1989, NADH Production from NAD+ using malic enzyme of Pseudomonas diminuta IFO-and 13182, J. Fermentation Bioeng. 68: 301–304.Google Scholar
  253. Suzuki, K., Gomi, T., Kaidoh, T., and Itagaki, E., 1991a, Hydroxylation of ortho-halo-genophenol and ortho-nitrophenol by salicylate hydroxylase. J. Biochem. 109: 348–353.PubMedGoogle Scholar
  254. Suzuki, M., Hayakawa, T., Shaw, J. P., Rekik, M., and Harayama, S., 1991b, Primary structure of xylene monooxygenase: Similarities to and differences from the alkane hydroxylation system, J. Bacteriol. 173: 1690–1695.PubMedGoogle Scholar
  255. Suzuki, T., Kasai, N., Yamamoto, R., and Minamiura, N., 1993, Production of highly optically active (R)-3-chloro-l,2-propanediol using a bacterium assimilating the (S)-isomer, Appl. Microbiol. Biotechnol. 40: 273–278.Google Scholar
  256. Swanson, P. E., 1992, Microbial transformation of benzocyclobutene to benzocyclo-butene-1-ol and benzocyclobutene-1-one, Appl. Environ. Microbiol. 58: 3404–3406.PubMedGoogle Scholar
  257. Syldatk, C., Cotoras, D., Dombach, G., Gross, C., Kallwass, H., and Wagner, F., 1987, Substrate-and stereospecificity, induction and metallo-dependence of a microbial hydantoinase, Biotech. Lett. 9: 25–30.Google Scholar
  258. Takagi, J. S., Fukunaga, R., Tokushige, M., and Katsuki, H., 1984, Purification, crystallization, and molecular properties of aspartase from Pseudomonas fluorescens, J. Biochem. 96: 545–552.PubMedGoogle Scholar
  259. Takahashi, S., 1983, Microbial synthesis of D-amino acids from DL-5-substituted hydantoins, Hakko Kogaku Kaishi 61: 139–151.Google Scholar
  260. Takamatsu, S., Tosa, T., and Chibata, I., 1986, Industrial production of L-alanine from ammonium fumarate using immobilized microbial cells of two kinds, J. Chem. Eng. Japan 19: 31–36.Google Scholar
  261. Takasaki, Y., Hinoki, K., Kataoka, Y., Fukuyama, S., and Nishimura, N., 1993, Enzymic production of D-mannose from D-fructose by mannose isomerase, J. Fermentation Bioeng. 76: 237–239.Google Scholar
  262. Tan, H., Tang, H., Joannou, C., Abdelwahab, N., and Mason, J., 1993, The Pseudomonas putida ML2 plasmid-encoded genes for benzene dioxygenase are unusual in codon usage and low in G + C content, Gene 130: 33–39.PubMedGoogle Scholar
  263. Taylor, D. G., and Trudgill, P. W., 1986, Camphor revisited: Studies of 2,5-diketo-camphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453., J. Bacteriol. 165: 489–497.PubMedGoogle Scholar
  264. Theil, F., 1995, Lipase-supported synthesis of biologically active compounds, Chem. Rev. 95: 2203–2227.Google Scholar
  265. Timmis, K. N., 1995, Environmental biotechnology, Bio/Technol. 13: 105.Google Scholar
  266. Timmis, K. N., Steffan, R. J., and Unterman, R., 1994, Designing microorganisms for the treatment of toxic wastes, Annu. Rev. Microbiol 48: 525–557.PubMedGoogle Scholar
  267. Tsuchiya, Y., and Nishio, N., 1980, Vitamin B12 production from methanol by continuous culture of Pseudomonas AM-1, J. Fermentation Technol. 58: 485–487.Google Scholar
  268. Tuneo, H., Hisao, T., and Tatsuo, I., 1989, Process for the production of aspartyl phenylalaninyl alkylesters, Patent EP Bl 0 102 529.Google Scholar
  269. Ube, Y., 1982, Process for the production of L-methylphenylalanine, Patent DE 3 217 908.Google Scholar
  270. van Beilen, J. B., Kingma, J., and Witholt, B., 1994, Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPol, Enzyme Microb. Technol. 16: 904–911.Google Scholar
  271. van den Wijngaard, A. J., Janssen, D. B., and Witholt, B., 1989, Degradation of epichlorohydrin and halohydrins by bacterial cultures isolated from freshwater sediment, J. Gen. Microbiol 135: 2199–2208.Google Scholar
  272. van der Linden, A. C., and Huybrechtse, R., 1967, Induction of alkane inducible and alpha-olefin-opoxidizing enzymes by a non-hydrocarbon in a Pseudomonas, Antox Leeuwenhoek 33: 381–385.Google Scholar
  273. van der Meer, J. R., 1994, Genetic adaptation of bacteria to chlorinated aromatic compounds, FEMS Microbiol. Rev. 15: 239–249.PubMedGoogle Scholar
  274. van der Werf, J., van den Tweel, W. J. J., Kamphuis, J., Hartmans, S., and de Bont, J. A. M., 1994, The potential of lyases for the industrial production of optically active compounds, Trends Biotechnol 12: 95–103.PubMedGoogle Scholar
  275. van der Werf, M. J., Hartmans, S., and van den Tweel, W. J. J., 1995, Effect of maleate counterion on malease activity: Production of D-malate in a crystal-liquid two-phase system, Enzyme Microb. Technol. 17: 430–436.Google Scholar
  276. van Scharrenburg, G. J. M., Sloothaak, J. B., Kruse, C. G., Smitskampwilms, E., and Brussee, J., 1993, The potential of (R)-oxynitrilases and (S)-oxynitrilases for the enzymatic synthesis of optically-active cyanohydrins, Ind. J. Chem. Section B 32: 16–19.Google Scholar
  277. Verkhovskaya, M. A., and Yamskov, I. A., 1991, Enzymic methods for separation of racemic amino acids and their derivatives, Uspekhi Khimii 60: 2250–2280.Google Scholar
  278. Wandrey, C., and Bossow, B., 1986, Continuous cofactor regeneration—utilization of polymer bound NAD(H) for the production of optically active acids, Biotechnol. Bioind. 3: 8–13.Google Scholar
  279. Warhurst, A. M., and Fewson, C. A., 1994, Microbial metabolism and biotransformations of styrene, J. Appl. Bacteriol. 77: 597–606.PubMedGoogle Scholar
  280. Watanabe, M., Morinaga, Y., and Enei, H., 1987a, L-Serine production by a methioninie-auxotrophic mutant of methylotrophic Pseudomonas, J. Fermentation Technol. 65: 617–620.Google Scholar
  281. Watanabe, M., Morinaga, Y., Takenouchi, T., and Enei, H., 1987b, Efficient conversion of glycine to L-serine by a glycine-resistant mutant of a methylotroph using cobalt as an inhibitor of L-serine degradation, J. Fermentation Technol. 65: 563–567.Google Scholar
  282. Weber, F. J., Ooijkaas, L. P., Schemen, R. M. W., Hartmans, S., and De Bont, J. A. M., 1993, Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents, Appl. Environ. Microbiol. 59: 3502–3504.PubMedGoogle Scholar
  283. West, S. E. H., Schweizer, H. P., Dall, C., Sample, A. K., and Runyenjanecky, L. J., 1994, Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa, Gene 148: 81–86.PubMedGoogle Scholar
  284. Whited, G. M., and Gibson, D. T., 1991, Toluene-4-monooxygenase, a 3-component enzyme-system that catalyzes the oxidation of toluene to para-cresol in Pseudomonas-mendocina KR1, J. Bacteriol. 173: 3010–3016.PubMedGoogle Scholar
  285. Williams, M. G., Olson, P. E., Tautvydas, K.J., and Bitner, R. M., 1990, The application of toluene dioxygenase in the synthesis of acetylene-terminated resins, Appl. Microbiol. Biotechnol. 34: 316–321.Google Scholar
  286. Winter, R. B., Yen, K. M., and Ensley, B. D., 1989, Microbial degradation of trichloroethylene, Patent EP 336 718.Google Scholar
  287. Witholt, B., and Lageveen, R. G., 1988, Production of compounds containing a terminal hydroxyl or epoxy group using microorganisms, e. g. Pseudomonas oleovorans, genetically engineered so that they are unable to convert the oxidation product further, Patent EP 277 674.Google Scholar
  288. Witholt, B., de Smet, M. J., Kingma, J., van Beilen, J. B., Kok, M., Lageveen, R. G., and Eggink, G., 1990, Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: Background and economic potential, Trends Biotechnol. 8: 46–52.PubMedGoogle Scholar
  289. Wong, C. H., and Whitesides, G. M., 1994, Enzymes in Synthetic Organic Chemistry, Pergamon Press, Oxford.Google Scholar
  290. Worsey, P. A., and Williams, M. J., 1975, Metabolism of toluene and xylenes by Pseudomonas putida (arvilla)mt-2: Evidence for a new function of the TOL plasmid, J. Bacteriol. 124: 7–13.PubMedGoogle Scholar
  291. Wright, M. A., Taylor, I. N., Lenn, M. J., Kelly, D. R., Mahdi, J. G., and Knowles, C. J., 1994, Baeyer-Villiger monooxygenases from microorganisms, FEMS Microbiol Lett. 116: 67–72.Google Scholar
  292. Wubbolts, M. G., and Timmis, K. N., 1990, Biotransformation of substituted benzoates to the corresponding cis-diols by an engineered strain of Pseudomonas oleovorans producing the TOL plasmid-specified enzyme toluate-1,2-dioxygenase, Appl. Environ. Microbiol. 56: 569–571.PubMedGoogle Scholar
  293. Wubbolts, M. G., Hoven, J., Melgert, B., and Witholt, B., 1994a, Efficient production of optically active styrene epoxides in two-liquid phase cultures, Enzyme Microb. Technol. 16: 887–894.Google Scholar
  294. Wubbolts, M. G., Reuvekamp, P., and Witholt, B., 1994b, TOL plasmid-specific xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation, Enzyme Microb. Technol. 16: 608–615.PubMedGoogle Scholar
  295. Wubbolts, M. G., Noordman, R., van Beilen, J. B., and Witholt, B., 1995, Enantioselective oxidation by non-heme iron monooxygenases from Pseudomonas, Recl. Trav. Chim. Pays-Bos 114: 139–144.Google Scholar
  296. Yamada, H., Shimizu, S., and Shiozaki, S., 1986, Process for producing 5-adenosyl-L-homocysteine, U.S. Patent 4 605 625.Google Scholar
  297. Yamada, H., and Tani, Y., 1983, Process for biologically producing amide, Patent EP 93 782.Google Scholar
  298. Yamada, H., and Tani, Y., 1987, Process for biological preparation of amides, U.S. Patent 4 637 982.Google Scholar
  299. Yamagami, T., Kobayashi, E., and Endo, T., 1993, Biological process for preparing optically active lactic acid, U.S. Patent 5 234 826.Google Scholar
  300. Yamaoto, K., Otsubo, K., and Orshi, K., 1990, Process for producing optically active α-substituted organic acids, Patent EP 348 901.Google Scholar
  301. Yen, K.-M., Blatt, L. M., and Karl, M. R., 1992, Bioconversions catalyzed by the toluene monooxygenase of Pseudomonas mendocina KR-1, Patent WO 9 206 208.Google Scholar
  302. Yokozeki, K., Kamimura, A., Eguchi, C., and Kubota, K., 1988, Asymmetric synthesis of S-carboxymethyl-L-cysteine by a chemo-enzymic method, Agric. Biol. Chem. 52: 2367–2368.Google Scholar
  303. Yokozeki, K., Nakamori, S., Eguchi, C., Yamada, K., and Mitsugi, K., 1987a, Screening of microorganisms producing D-p-hydroxyphenylglycine from DL-5-(p-hydroxyphenyl)-hydantoin, Agric. Biol. Chem. 51: 355–362.Google Scholar
  304. Yokozeki, K., Nakamori, S., Yamanaka, S., Eguchi, C., Mitsugi, K., and Yoshinaga, F., 1987b, Optimal conditions for the enzymic production of D-amino acids from the corresponding 5-substituted hydantoins, Agric. Biol. Chem. 51: 715–719.Google Scholar
  305. Zeyer, J., Lehrbach, P. R., and Timmis, K. N., 1985, Use of cloned genes of Pseudomonas TOL plasmid to effect biotransformation of benzoates to cis-dihydrodiols and catechols by Escherichia coli cells, Appl. Environ. Microbiol 50: 1409–1413.PubMedGoogle Scholar
  306. Zimmermann, T., Kiener, A., and Harayama, S., 1992, Hydroxylation of methyl groups in aromatic heterocyclic compounds by microorganisms, Patent EP 477828.Google Scholar
  307. Zimmerman, T., Kiener, A., and Harayama, S., 1993, Hydroxylation of methyl groups in aromatic heterocycles by microorganisms, U.S. Patent 5 217 884.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Marcel G. Wubbolts
    • 1
  • Bernard Witholt
    • 2
  1. 1.DSM ResearchGeleenThe Netherlands
  2. 2.Institute of BiotechnologyETH Hönggerberg, HPTZürichSwitzerland

Personalised recommendations