Advertisement

Pseudomonas pp 139-167 | Cite as

Outer Membrane Proteins

  • Robert E. W. Hancock
  • Elizabeth A. Worobec
Part of the Biotechnology Handbooks book series (BTHA, volume 10)

Abstract

Pseudomonas aeruginosa is a gram-negative bacterium and as such has an outer membrane. The general functions of the outer membrane include size-dependent exclusion of larger molecules, permitting selective permeability of smaller molecules, uptake of large and small polycations, specific facilitated uptake of certain substrates, export of excreted molecules including proteins, secondary metabolites and siderophores, maintenance of cell shape and growth in low osmolarity medium, binding of phages, bacteriocins, and pili during conjugation, serum resistance, and surface binding of antibodies and complement. Most of these functions have been described for Pseudomonas aeruginosa and result from the properties of outer membrane functions. It has been 5 years since the last review of the outer membrane proteins of Pseudomonas aeruginosa (Hancock et al., 1990). Because of the vast amount of data available on this topic, we have concentrated on the information published since the previous review, but prior to the release of the Pseudomonas aeruginosa genomic sequence (http://www.pseudomonas.com).

Keywords

Outer Membrane Iron Uptake Outer Membrane Protein Basic Amino Acid Multiple Antibiotic Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ankenbauer, R. G., 1992, Cloning of the outer membrane high-affinity Fe (III)-pyochelin receptor of Pseudomonas aeruginosa., J. Bacteriol. 174: 4401–4409.PubMedGoogle Scholar
  2. Ankenbauer, R. G., and Quan, H. N., 1994, FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: A phenolate siderophore receptor homologous to hydroxamate siderophore receptors, J. Bacteriol. 176: 307–319.PubMedGoogle Scholar
  3. Bayer, A. S., Peter, J., Parr, T. R., Chan, L., and Hancock, R. E. W., 1987, In vivo development of ceftazidime resistance in an experimental Pseudomonas aeruginosa endocarditis model, Antimicrob. Agents Chemother. 31: 253–258.PubMedGoogle Scholar
  4. Bell, A., and Hancock, R. E. W., 1989, Outer membrane protein H1 of Pseudomonas aeruginosa: Expression, gene cloning, and nucleotide sequence, J. Bacteriol 171: 3211–3217.PubMedGoogle Scholar
  5. Bellido, F., Martin, N. C., Siehnel, R. J. and Hancock, R. E. W., 1992, Réévaluation, using intact cells, of the exclusion limit and role of porin Opr in Pseudomonas aeruginosa outer membrane permeability, J. Bacteriol 174: 5196–5203.PubMedGoogle Scholar
  6. Bitter, W., Marugg, J. D., de Weger, L. A., Tommassen, J. and Weisbeek, P. J., 1991, The ferric-pseudobactin receptor PupA of Pseudomonas putida: Homology to TonB-dependent Escherichia coli receptors and specificity of the protein, Mol. Microbiol. 5: 647–655.PubMedGoogle Scholar
  7. Bosch, D., Scholten, M., Verhagen, C. and Tommassen, J., 1989, The role of carboxyterminal membrane-spanning fragment in the biogenesis of Escherichia coli K-12 outer membrane protein PhoE, Mol Gen. Genet. 216: 144–148.PubMedGoogle Scholar
  8. Chamberland, S., Bayer, A. S., Schollaardt, T., Wong, S. A. and Bryan, L. E., 1989, Characterization of mechanisms of quinolone resistance in Pseudomonas aeruginosa strains isolated in vitro and in vivo during experimental endocarditis, Antimicrob. Agents Chemother. 33: 624–634.PubMedGoogle Scholar
  9. Chu, L., May, T. B., Chakrabarty, A. M. and T. K., 1991, Nucleotide sequence and expression of the algE gene involved in alginate biosynthesis by Pseudomonas aeruginosa, Gene 107: 1–10.PubMedGoogle Scholar
  10. Cornelis, P., Bouia, A., Belarbi, A., Guyonvarch, A., Kammerer, B., Hannaert, V. and Hubert, J. C, 1989, Cloning and analysis of the gene for the major outer membrane lipoprotein from Pseudomonas aeruginosa, Mol. Microbiol. 3: 421–428.PubMedGoogle Scholar
  11. Cornelis, P., Moguilevsky, N., Jacques, J. F., and Masson, P. L., 1987, Study of the siderophores and receptors in different clinical isolates of Pseudomonas aeruginosa, in: Basic Research and Clinical Aspects of Pseudomonas aeruginosa (G. Döring, I. A. Holder, and K. Botzenhart, eds.) S. Karger, Basel, pp. 290–306.Google Scholar
  12. Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Paupitt, P. A., Janosonius, J. N., and Rosenbusch, J. P., 1992, Crystal structures explain functional properties of two Escherichia coli porins, Nature (London) 358: 727–733.Google Scholar
  13. Cox, C. D., 1980, Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa, J. Bacteriol. 142: 581–587.PubMedGoogle Scholar
  14. Cox, C. D., and Adams, P., 1985, Siderophore activity of pyoverdine for Pseudomonas aeruginosa, Infect. Immun. 48: 130–138.PubMedGoogle Scholar
  15. Curtis, N. A. C, Eisenstadt, R. L., East, S. J., Cornford, R. J., Walker, L. A. and White, A. J., 1988, Iron-regulated outer membrane proteins of K-12 and mechanism of action of catechol-substituted cephalosporins, Antimicrob. Agents Chemother. 32: 1879–1886.PubMedGoogle Scholar
  16. Dean, C. R., and Poole, K., 1993, Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa, J. Bacteriol. 175: 317–324.PubMedGoogle Scholar
  17. De Mot, R., Schoofs, G., Roelandt, A., Declerk, P., Proost, P., van Damme, J., and Vanderleyden, J., 1994, Molecular characterization of the major outer membrane protein OprF from plant-root colonizing Pseudomonas fluorescens, Microbiology 140: 1377–1387.PubMedGoogle Scholar
  18. De Mot, R. and Vanderleyden, J., 1994, A conserved surface-exposed domain in outer membrane proteins of pathogenic Pseudomonas and Branhamella species shares sequence homology with the calcium-binding repeats of the eukaryotic extracellular matrix protein thrombospondin, Mol. Microbiol. 13: 379–380.PubMedGoogle Scholar
  19. De Vox, D., Lim, A., Jr., De Vox, P., Sarniguet, A., Kersters, K., and Cornelis, P., 1993, Detection of the outer membrane lipoprotein I and its gene in fluorescent and nonfluorescent pseudomonads: Implications for taxonomy and diagnosis, J. Gen. Microbiol. 139: 2215–2223.Google Scholar
  20. Duchene, M., Barron, C., Schweizer, A., von Specht, B.-U., and Domdey, H., 1989, Pseudomonas aeruginosa outer membrane lipoprotein I gene: Molecular cloning, sequence, and expression in Escherichia coli, J. Bacteriol. 171: 4130–4137.PubMedGoogle Scholar
  21. Earhart, C. F., 1987, Ferrienterobactin transport in Escherichia coli, in: Iron Transport in Microbes, Plants, and animals (G. Winkelmann, D. van der Helm, and J. B. Neilands, eds.), VCH Verlagsgellschaft mbH, Weinheim, Germany, pp. 67–84.Google Scholar
  22. Ferenci, T. and Stretton, S., 1989, Cysteine-22 and cysteine-38 are not essential for the function of maltoporin (LamB protein), FEMS Microbiol. Lett. 61: 335–340.Google Scholar
  23. Finke, M., Duchene, M., Eckhardt, A., Domdey, H. and vonSpecht, B.-U., 1990, Protection against experimental Pseudomonas aeruginosa infection by recombinant P. aeruginosa lipoprotein I exxpressed in Escherichia coli, Infect. Immun. 58: 2241–2244.PubMedGoogle Scholar
  24. Finke, M., Muth G., Reichhelm, T., Thomas, M., Duchene, M., Hungerer, K.-D., Domdy, H., and von Specht, B. U., 1991, Protection of immunosuppressed mice against infection with Pseudomonas aeruginosa by recombinant P. aeruginosa by recombinant P. aeruginosa lipoprotein I and lipoprotein I-specific monoclonal antibodies, Infect. Immun. 59: 1251–1254.PubMedGoogle Scholar
  25. Freudl, R., MacIntyre, S., Degen, M., and Henning, U., 1986, Cell surface exposure of the outer membrane protein OmpA of Eschericha coli K12, J. Mol. Biol. 188: 491–494.PubMedGoogle Scholar
  26. Fukuda, H., Hosaka, M., Hirai, K., and Iyobe, S., 1990, New norfloxacin resistance gene in Pseudomonas aeruginosa PAO, Antimicrob. Agents Chemother. 34: 1757–1761.PubMedGoogle Scholar
  27. Fukuda, H., Hosaka, M., Iyobe, S., Gotoh, N., Nishino, T., and Hirai, K., 1994, nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 39: 790–792.Google Scholar
  28. Fukuoka, T., Masuda, N., Takenouchi, T., Sekine, N., Iijima, M., and Ohya, S., 1991, Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low amino acid media, Antimicrob. Agents Chemother. 35: 529–532.PubMedGoogle Scholar
  29. Gensberg, K., Hughes, K., and Smith, A. W., 1992, Siderophore-specific induction of iron uptake in Pseudomonas aeruginosa, J. Gen. Microbiol. 138: 2381–2387.PubMedGoogle Scholar
  30. Gerbl-Rieger, S., Peters, J., Kellerman, J., Lottspeich, F., and Baumeister, W., 1991, Nucleotide and derived amino acid sequences of the major porin of Comamonas acidovorans and comparison of porin primary structures, J. Bacteriol. 173: 2196–2205.PubMedGoogle Scholar
  31. Glaser, P., Sakamoto, H., Bellalou, J., Ullmann, A., and Danchin, A., 1988, Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordatella pertussis, EMBO J. 7: 3997–4004.PubMedGoogle Scholar
  32. Gotoh, N., Itoh, N., Tsujimoto, H., Yamagishi, J.-L, Oyamada, Y., and Nishino, R., 1994a, Isolation of OprM-deficient mutants of Pseudomonas aeruginosa by transposon insertion mutagenesis: Evidence of involvement in multiple antibiotic resistance, FEMS Microbiol. Lett. 122: 267–274.PubMedGoogle Scholar
  33. Gotoh, N., Itoh, N., Yamada, H., and Nishino, T., 1994b, Evidence for the location of OprM in the Pseudomonas aeruginosa outer membrane, FEMS Microbiol. Lett. 122: 309–312.PubMedGoogle Scholar
  34. Graben, E., Wingender, J., and Winkler, U. K., 1990, An ouiter membrane protein chracterisitic of mucoid strains of Pseudomonas aeruginosa, FEMS Microbiol. Lett. 68: 83–88.Google Scholar
  35. Hancock, R. E. W., and Carey, A. M., 1979, Outer membrane of Pseudomonas aeruginosa: Heat-and 2-mercaptoethanol-modifiable proteins, J. Bacteriol. 140: 901–910.Google Scholar
  36. Hancock, R. E. W., and Carey, A. M., 1980, Protein D1-a glucose inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa, FEMS Microbiol. Lett. 8: 699–707.Google Scholar
  37. Hancock, R. E. W., Elgi, C., Benzy, R., and Siehnel, R. J., 1992, Overexpression in Escherichia coli and functional analysis of a novel PPi-selective porin, OprO, from Pseudomonas aeruginosa, J. Bacteriol. 174: 471–476.PubMedGoogle Scholar
  38. Hancock, R. E. W., Irvin, R. T., Costerton, J. W., and Carey, A. M., 1981, The outer membrane of Pseudomonas aeruginosa: Peptidoglycan associated proteins, J. Bacteriol. 145: 628–631.PubMedGoogle Scholar
  39. Hancock, R. E. W., Siehnel, R., and Martin, N., 1990, Outer membrane proteins of Pseudomonas aeruginosa, Mol. Microbiol. 4: 1069–1075.PubMedGoogle Scholar
  40. Heinrichs, D. E., and Poole, K., 1993, Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa, J. Bacteriol. 175: 5882–5889.PubMedGoogle Scholar
  41. Heinrichs, D. E., Young, L., and Poole, K., 1991, Pyochelin-mediated iron transport in Pseudomonas aeruginosa: Involvement of a high-molecular-mass outer membrane protein, Infect. Immun. 59: 3680–3684.PubMedGoogle Scholar
  42. Hirai, K., Suzue, S., Irikura, T., Iyobe, S., and Mitsuhashi, S., 1987, Mutations producing resistance to norflaxacin in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, 31: 582–586.Google Scholar
  43. Hohnadel, D., and Meyer, J.-M., 1988, Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains, J. Bacteriol. 170-4865–4873.PubMedGoogle Scholar
  44. Hosaka, M., Gotoh, N. and Nishino, R., 1995, Purification of a 54-kilodalton protein (OprJ) produced in NfxB mutants of Pseudomonas aeruginosa and production of a monoclonal antibody specific to OprJ, Antimicrob. Agents Chemother. 39: 1731–1735.PubMedGoogle Scholar
  45. Huang, H., and Hancock, R. E. W., 1996, Role of specific loop regions in determining the function of the imipenem specific pore-protein OprD of Pseudomonas aeruginosa, J. Bacteriol., in press.Google Scholar
  46. Huang, H., and Hancock, R. E. W., 1993, Genetic definition of the substrate selectivity of outer membrane protein OprD of Pseudomonas aeruginosa, J. Bacteriol. 175: 7793–7800.PubMedGoogle Scholar
  47. Huang, H., Jeanteur, D., Pattus, F., and Hancock, R. E. W., 1995, Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD, Mol. Microbiol. 16: 931–941.PubMedGoogle Scholar
  48. Hughes, E. E., Gilleland, L. B., and Gilleland, H. E., 1992, Synthetic peptides representing epitopes of outer membrane protein F of Pseudomonas aeruginosa that elicit antibodies reactive with whole cells of heterologous immunotype strains of P. aeruginosa, Infect. Immun. 60: 3497–3503.PubMedGoogle Scholar
  49. Kropinski, A. M. B., Lewis, V., and Berry, D., 1987 Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aertuginosa, J. Bacteriol. 169: 1960–1966.PubMedGoogle Scholar
  50. Lee, H. S., Hancock, R. E. W., and Ingraham, J. L., 1989, Properties of a Pseudomonas stutzeri outer membrane channel-forming protein (NosA) required for production of copper containing N2O reductase, Bacteriol. 171: 2096–2100.Google Scholar
  51. Legakis, N. J., Tzouvelekis, L. S., Makris, A., and Kotsifaki, H., 1989, Outer membrane alterations in mutiresistant mutants of Pseudomonas aeruginosa selected by ciprofloxacin, Antimicrob. Agents Chemother, 33: 124–127.PubMedGoogle Scholar
  52. Létoffé, S., Delepelaire, P., and Wandersman, C., 1990, Protease secretion by Erwinia chrysanthemi: The specific secretion functions are analogous to those of Escherichia coli α-hemolysin, EMBO J. 9: 1375–1382.PubMedGoogle Scholar
  53. Li, X.-Z., Livermore, D. M., and Nikaido, H., 1994a, Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: Resistance to tetracycline, chloramphenicol, and norfloxacin, Antimicrob. Agents Chemother. 38: 1732–1741.PubMedGoogle Scholar
  54. Li, X.-Z., Nikaido, H., and Poole, K., 1995, Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 39: 1948–1953.PubMedGoogle Scholar
  55. Lim, A., de Vox, D., Brauns, M., Gabella, A., Hamers, R., and Comelis, P., 1995, unpublished cited in Genbank release, Accession No. 250191.Google Scholar
  56. Liu, P. V., and Shokrani, F., 1978, Biological activities of pyochelins: Iron-chelating agents of Pseudomonas aeruginosa, Infect. Immun. 22: 878–890.PubMedGoogle Scholar
  57. Lundrigan, M. D., and Kadner, R. J., 1986, Nucleotide sequence of the gene for the ferrienterochelin receptor FepA in Escherichia coli: Homology among outer membrane receptors that interact with TonB, J. Biol., Chem. 137: 653–657.Google Scholar
  58. Masuda, N., and Ohya, S., 1995, Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 39: 645–649.PubMedGoogle Scholar
  59. Meyer, J. M., 1992, Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: Possible involvement of porin OprF in iron translocation, J. Gen. Microbiol. 138: 951–958.PubMedGoogle Scholar
  60. Meyer, J.-M., Hohnadel, D., Khan, A., and Cornelis, P., 1990, Pyoverdin-facilitated iron uptake in Pseudomonas aeruginosa: Immunological characterization of th ferripyoverdin receptor, Mol. Microbiol. 4: 1401–1405.PubMedGoogle Scholar
  61. Michea-Hamzehpour, M., Furet, Y. X., and Pechere, J. C, 1991, Role of protein D2 and lipopolysaccharide in diffusion of quinolones through the outer membrane of Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 35: 2091–2097.PubMedGoogle Scholar
  62. Mizuno, T. 1979, A novel peptidoglycan-associated lipoprotein found in the cell envelope of Pseudomonas aeruginosa and Escherichia coli, J. Biochem. 86: 991–1000.PubMedGoogle Scholar
  63. Mizuno, T., 1981, A novel peptidoglycan-associated lipoprotein (PAL) found in the outer membrane of Proteus mirabilis and other gram-negative bacteria, J. Biochem. 89: 1039–1049.PubMedGoogle Scholar
  64. Mizuno, T., and Kageyama, M., 1979, Isolation and characterization of a major outer membrane protein of Pseudomonas aeruginosa. vidence for the occurence of a lipoprotein, J. Biochem. 85: 115–122.PubMedGoogle Scholar
  65. Morshed, S. R. M., Lei, Y., Yoneyama, H., and Nakae, T., 1995, Expression of genes associated with antibiotic extrusion in Pseudomonas aeruginosa, Biochem. Biophys. Res. Commun. 210: 356–362.PubMedGoogle Scholar
  66. Mutharia, L. M., and Hancock, R. E. W., 1985, Monoclonal antibody specific for an outer membrane lipoprotein of the Pseudomonas fluorescens group of the family Pseudomonodaceae, Int. J. Syst. Bacteriol. 35: 530–532.Google Scholar
  67. Nakae, T., Yoshihara, E., Yoneyama, H., and Ishii, J., 1996, Protein D2 of the outer membrane of Pseudomonas aeruginosa. In: Abstracts 5th Int. Pseudomonas Meeting, Tsukuba City, Japan, 1995.Google Scholar
  68. Nicas, T. L., and Hancock, R. E. W., 1983, Alteration of susceptibility to EDTA polymyxin B and gentamicin in Pseudomonas aeruginosa by divalent cation regulation of outer membrane protein H1, J. Gen. Microbiol. 129: 509–517.PubMedGoogle Scholar
  69. Nicas, T. L., and Hancock, R. E. W., 1989, Outer membrane protein H1 of Pseudomonas aeruginosa: Involvement in adaptive and mutational resistance to ethylenediaminetetraacetate, polymisin B, and gentamycin, J. Bacteriol. 143: 872–878.Google Scholar
  70. Nikaido, H., Nikaido, T., and Harayama, S., 1991, Identification and characterization of porins in Pseudomonas aeruginosa, J. Biol. Chem. 266: 770–779.PubMedGoogle Scholar
  71. Nikaido, H., and Rosenberg, Y., 1990, cir and Fiu proteins in the outer membrane of Escherichia coli catalyse transport of monomeric catechols: Study with β-lactam antibiotics containing catechol and analogous groups, J. Bacteriol. 172: 1361–1367.PubMedGoogle Scholar
  72. Ohkawa, I., Shiga, S., and Kageyama, M., 1980, Effect of iron concentration in the growth medium on the sensitivity of Pseudomonas aeruginosa to pyocin S2, J. Biochem. 87: 323–331.PubMedGoogle Scholar
  73. Piddock, L. V. J., Hall, M. C., Bellido, F., Bains, M., and Hancock, R. E. W., 1992, A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 36: 1057–1061.PubMedGoogle Scholar
  74. Poole, K., Krebes, K., McNally, C., and Neshat, S., 1993, Multiple antibiotic resistance in Pseudomonas aeruginosa: Evidence for involvement of an efflux operon, J. Bacteriol. 175: 7363–7372.PubMedGoogle Scholar
  75. Poole, K., Neshat, S., and Heinrichs, D., 1991, Pyoverdine-mediated iron transport in Pseudomonas aeruginosa: Involvement of high-molecular-mass outer membrane protein, FEMS Microbiol. Lett. 78: 1–6.Google Scholar
  76. Poole, K., Neshat, S., Krebes, K., and Heinrichs, D., 1993, Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa, J. Bacteriol. 175: 4597–4604.PubMedGoogle Scholar
  77. Poole, K., Young, L., and Neshat, S., 1990, Enterobactin-mediated ironn transport in Pseudomonas aeruginosa, J. Bacteriol. 172: 6991–6996.PubMedGoogle Scholar
  78. Quinn, J. P., Dudeck, E. J., Divincenzo, C. A., Lucks, D. A., and Lerner, S. A., 1986, Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections, J. Infect. Dis. 154: 289–294.PubMedGoogle Scholar
  79. Quiocho, F. A., 1989, Protein-carbohydrate interactions: Basic molecular features, Pure Appl. Chem. 61: 1293–1306.Google Scholar
  80. Rahner, R., Eckhardt, A., Duchêne, M.N., Domdey, H., and von Specht, B. U., 1990, Protection of immunosuppressed mice against infection with Pseudomonas aeruginosa by monoclonal antibodies to outer membrane protein OprI, Infection 18: 242–254.PubMedGoogle Scholar
  81. Rawling, E. G., 1995, Outer membrane protein OprF of Pseudomonas aeruginosa, Ph.D. Thesis, University of British Columbia, Vancouver.Google Scholar
  82. Rawling, E. G., Martin, N. L., and Hancock, R. E. W., 1995, Epitope mapping of the Pseudomonas aeruginosa major outer membrane protein OprF. Infect. Immun. 63: 38–42.PubMedGoogle Scholar
  83. Rehm, B., Boheim, G., Tommassen, J., and Winkler, U. K., 1994, Overexpression of algE in Escherichia coli: Subcellular localization, purification, and ion channel properties, J. Bacterial. 176: 5639–5647.Google Scholar
  84. Rutz, J. M., Liu, J., Lyons, J. A., Goranson, J., Armstrong, S. K., McIntosh, M. A., Feix, J. B., and Klebba, P. E., 1992, Formation of a gated channel by a ligand-specific transport channel in the bacterial outer membrane, Science 258: 471–475.PubMedGoogle Scholar
  85. Saint-Onge, A., Romeyer, F., Lebel, P. Masson, L., and Brousseau, R., 1992, Specificity of the Pseudomonas aeruginosa PAO1 lipoprotein I gene as a DNA probe and PCR target region with the Pseudomonodaceae, J. Gen. Microbiol. 138: 733–741.PubMedGoogle Scholar
  86. Saravolac, E. G., Taylor, N. F., Benz, R., and Hancock, R. E. W., 1991, Purification of glucose-inducible outer membrane protein OprB of Pseudomonas putida and reconstitution of glucose-specific pores, J. Bacteriol. 173: 4970–4976.PubMedGoogle Scholar
  87. Satake, S., Yoshihara, E., and Nakae, T., 1990, Diffusion of β-lactam antibiotics through liposome membranes reconstituted from purified porins of the outer membrane of Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 34: 685–690.PubMedGoogle Scholar
  88. Schirmer, T., Keller, T. A., Wang, Y.-F., and Rosenbusch, J. P., 1995, Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution, Science 267: 512–514.PubMedGoogle Scholar
  89. Siehnel, R. J., Egli, C., and Hancock, R. E. W, 1992, Polyphospate-selective porin OprO of Pseudomonas aeruginosa: Expression purification and sequence, Mol. Microbiol. 6: 2319–2326.PubMedGoogle Scholar
  90. Siehnel, R. J., Martin, N. L., and Hancock, R. E. W, 1990, Function and structure of the porin proteins OprF and OprP of Pseudomonas aeruginosa, In: Pseudomonas: Biotransformation, Pathogenesis and Evolving Biotechnology, S. Silver, A. M. Chakrabarty, B. Iglewski, and S. Kaplan eds.) American Society for Microbiology, Washington, D.C., pp. 328–342.Google Scholar
  91. Sokol, P. A., and Woods, D. E., 1983, Demonstration of an iron-siderophore-binding protein in the outer membrane of Pseudomonas aeruginosa, Infect. Immun. 40: 665–669.PubMedGoogle Scholar
  92. Sukhan, A., and Hancock, R. E. W, 1995, Insertion mutagenesis of the Pseudomonas aeruginosa phosphate-specific porin OprP, J. Bacteriol. 177: 4914–4920.PubMedGoogle Scholar
  93. Sukhan, A., and Hancock, R. E. W, 1996, The role of specific lysine residues in the passage of phosphate and chloride ions through the Pseudomonas aeruginosa phosphate starvation inducible porin OprP. J. Biol. Chem. 271:21239–21242.PubMedGoogle Scholar
  94. Thanassi, D. G., Suh, G. S., and Nikaido, H., 1995, Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli, J. Bacteriol. 177: 998–1007.PubMedGoogle Scholar
  95. Toth, A., Schödel, F., Duchêne, M., Massarrat, K., Blum, B., Schmitt, A., Domdey, H., and von Specht, B.-U., 1994, Protection of immunosuppressed mice against tanslocation of Pseudomonas aerugginosa from the gut by oral immunization with recombinant Pseudomonas aeruginosa outer membrane protein I expressing Salmonella dublin, Vaccine 12: 1215–1221.PubMedGoogle Scholar
  96. Trias, J., and Nikaido, H., 1990a, Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 34: 52–57.PubMedGoogle Scholar
  97. Trias, J., and Nikaido, 1990b, Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides, J. Biol. Chem. 265: 15680–15684.PubMedGoogle Scholar
  98. Trias, J., Rosenberg, E. Y, and Nikaido, H., 1988, Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa, Biochem. Biophys. Acta 938: 493–496.PubMedGoogle Scholar
  99. VonSpecht, B.-U., Knapp, B., Muth, G., Bröker, M., Hungerer, K.-D., Diehl, K.-D., Massarrat, K., Seemann, A., and Domdey, H., 1995, Protection of immunocompromised mice against lethal infection with Pseudomonas aeruginosa by active or passive immunization with recombinant P. aeruginosa outer membrane protein F and outer membrane protein I fusion proteins, Infect. Immun. 63: 1855–1862.Google Scholar
  100. Williams, S. G., Greenwood, J. A., and Jones, C. W., 1994, The effect of nutrient limitation on glycerol uptake and metabolism in continuous cultures of Pseudomonas aeruginosa, Microbiology 140: 2961–2969.PubMedGoogle Scholar
  101. Wong, R. S. Y., Wirtz, R. A., and Hancock, R. E. W, 1995, Pseudomona aeruginosa outer membrane protein OprF as an expression vector for foreign epitopes: The effects of positioning and length on the antigenicity of the epitope, Gene 158: 55–60.PubMedGoogle Scholar
  102. Woodruff, W. A., and Hancock, R. E. W., 1982, Construction and characterization of Pseudomonas aeruginosa protein F-deficient mutant after in vivo and in vitro insertion mutagenesis of the cloned gene, J. Bacteriol. 170: 2592–2598.Google Scholar
  103. Wylie, J. L., 1994, Characterization of the OprB porin of Pseudomonas aeruginosa, Ph.D. Thesis, University of Manitoba, Winnipeg, Manitoba, Canada.Google Scholar
  104. Wylie, J. L., Bernegger-Egli, C., O’Neil, J. D.J., and Worobec, E. A., 1993, Biophysical characterization of OprB, a glucose-inducible porin of Pseudomonas aeruginosa, J. Bioenerg. Biomembr. 25: 547–556.PubMedGoogle Scholar
  105. Wylie, J. L., and Worobec, E. A., 1994, Cloning and nucleotide sequence of the Pseudomonas aeruginosa glucose-selective OprB porin gene and distribution of OprB within the family Pseudomonadaceae, Eur. J. Biochem. 220: 505–512.PubMedGoogle Scholar
  106. Wylie, J. L., and Worobec, E. A., 1995, The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa, J. Bacteriol. 177: 3021–3026.PubMedGoogle Scholar
  107. Yamano, Y., Nishikawa, T. and Komastusu, Y., 1993, Cloning and nucleotide sequence of anaerobically induced porin protein E1 (OprE) of Pseudomonas aeruginosa PAO1, Mol. Microbiol. 8:993–1004.PubMedGoogle Scholar
  108. Yamano, Y., Nishkawa, T., and Komatsu, Y., 1994, Ferric iron transport system of Pseudomonas aeruginosa PAO1 that functions as the uptake pathway of a novel catechol-substituted chephalosporin, S-9096, Appl. Microbiol. Biotechnol. 40: 892–897.Google Scholar
  109. Yates, J. M., Morris, G., and Brown, M. R. W, 1989, Effect of iron concentration and growth rate on the expression of protein G in Pseudomonas aeruginosa, FEMS Microbiol. Lett. 58: 259–262.Google Scholar
  110. Yoneyama, H., Yamano, Y., and Nakae, T., 1995, Role of porins in the antibiotic susceptibility of Pseudomonas aeruginosa: Construction of mutants with deletions in the multiple porin genes, Biochem. Biophys. Res. Commun. 213: 88–95.PubMedGoogle Scholar
  111. Yoshida, T., Muratani, T., Iyobe, S., and Mitsuhashi, S., 1994, Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 38: 1466–1469.PubMedGoogle Scholar
  112. Yoshihara, E., and Nakae, T, 1989, Identification of porins in the outer membrane of Pseudomonas aeruginosa that form small diffusion pores, J. Biol. Chem. 264: 6297–6301.PubMedGoogle Scholar
  113. Young, M. L., Bains, M., Bell, A., and Hancock, R. E. W, 1992, Role of Pseudomonas aeruginosa outer membrane protein OprH in polymyxin and gentamicin resistance: Isolation of an OprH-deflcient mutant by gene replacement techniques, Antimicrob. Agents Chemother. 36: 2566–2568.PubMedGoogle Scholar
  114. Young, M. L., and Hancock, R. E. W, 1992, Fluoroquinolone supersusceptibility mediated by Opr overexpression in Pseudomonas aeruginosa: Evidence for involvement of a nonporin pathway, Antimicrob. Agents Chemother. 36: 2365–2369.PubMedGoogle Scholar
  115. Zhanel, G. G., Karlowsky, J. A., Saunders, M. H., Davidson, R. J., Hoban, D. J., Hancock, R. E. W., McLean, I., and Nicolle, L. E., 1994, Development of multiple antibioticresistant (MAR) mutants of Pseudomonas aeruginosa after serial exposure to fluoroquinolones, Antimicrob. Agents Chemother. 39: 489–495.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Robert E. W. Hancock
    • 1
  • Elizabeth A. Worobec
    • 2
  1. 1.Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of MicrobiologyUniversity of ManitobaWinnepegCanada

Personalised recommendations