Pseudomonas pp 111-138 | Cite as

Lipids of Pseudomonas

  • Holly C. Pinkart
  • David C. White
Part of the Biotechnology Handbooks book series (BTHA, volume 10)


Lipids are generally defined as fatty acids, alcohols, hydrocarbons, and compounds containing these substances which are soluble in organic solvents. The lipids most commonly found in bacteria are phospholipids, glycolipids, ornithine amide lipids, fatty acids, and lipopolysaccharides. Phospholipids generally constitute ~40% of the cytoplasmic membrane of bacteria and up to 25% of the outer membrane (mainly localized in the inner leaflet). A generalized structure for a Pseudomonas membrane is shown in Figure 1. It has been found that the predominant phospholipid in both the inner and outer membranes in most Pseudomonas species is phosphatidylethanolamine (Wilkinson, 1988). Ornithine amide lipids are localized in the outer membrane. Lipopolysaccharides are located in the outer leaflet of the outer membrane of gram-negative bacteria. Glycolipids are generally found as storage lipids located in intracellular inclusions but can also be found in the membranes of P. diminuta and P. vesicularis and gram-positive bacteria (Wilkinson, 1988). Carotenoids and hydrocarbons may be found in the cytoplasmic membrane.


Outer Membrane Pseudomonas Aeruginosa Pseudomonas Putida Hydroxy Fatty Acid Pseudomonas Stutzeri 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A. J., and Dawes, E. A., 1990, Occurence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkoanates, Microbiol. Rev. 54: 450–472.PubMedGoogle Scholar
  2. Bhakoo, M., and Herbert, R. A., 1989, Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas species grown at different temperatures. Arch. Microbiol. 126: 51–5.CrossRefGoogle Scholar
  3. Bouzar, H., Jones, J. B., Stall, R. E., Hodge, N. C, Minsavage, G. V., Benedict, A. A., and Alverez, A. M., 1994, Physiological, chemical, serological, and pathogenic analysis of a worldwide collection of Xanthomonas campestris pv. vesicatoria strains, Phytopathology 84: 663–671.CrossRefGoogle Scholar
  4. Boulton, C. A., and Ratledge, C., 1987, Biosynthesis of lipid precursors to surfactant production, in: Biosurfactants and Biotechnology (N. Kosaric, W. L. Cairns, and N. C. C. Gray, eds.), M. Dekker, New York, pp. 47–87.Google Scholar
  5. Brint, J. M., and Ohman, D., 1995, Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR and RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family, J. Bacteriol. 177: 7155–7163.PubMedGoogle Scholar
  6. Burger, M. M., Glaser, L., and Burton, R. M., 1963, The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa, J. Biol. Chem. 238: 2595–2604.PubMedGoogle Scholar
  7. de Andres, C., Espuny, M. J., Robert, M., Mercade, M. E., Manresa, A., and Guinea, J., 1991, Cellular lipid accumulation by Pseudomonas aeruginosa 44T1, Appl. Microbiol. Biotechnol. 35: 813–816.CrossRefGoogle Scholar
  8. Dees, S. B., Hollis, D. G., Weaver, R. E., and Moss, C. W., 1983, Cellular fatty acid composition of Pseudomonas marginata and closely related bacteria, J. Clin. Microbiol. 18: 1073–1078.PubMedGoogle Scholar
  9. Denny, T. P., 1988, Phenotypic diversity in Pseudomonas syringae pv. tomato, J. Gen. Microbiol. 134: 1939–1948.Google Scholar
  10. de Smet, M. J., Eggink, G., Witholt, B., Kingma, J., and Wynberg, H., 1983, Characterization of cellular inclusions formed by Pseudomonas oleovorans during growth on octaine, J. Bacteriol. 154: 870–878.PubMedGoogle Scholar
  11. de Waard, P., van der Wal, H., Huijberts, G. N. M., and Eggink, G., 1993, Heteronuclear NMR analysis of unsaturated fatty acids in poly(3-hydroxyalkoanates): Study of betaoxidation in Pseudomonas putida. J. Biol. Chem. 268: 315–319.PubMedGoogle Scholar
  12. Edwards, R. A., Dainty, R. H., and Hibbard, C. M., 1987, Volatile compounds produced by meat pseudomonads and related reference strains during growth on beef stored in air at chill temperatures, J. Appl. Bacteriol. 62: 403–412.CrossRefPubMedGoogle Scholar
  13. Finnerty, W. R., 1994, Biosurfactants in environmental biotechnology. Curr. Op. Biotech. 5: 291–295.CrossRefGoogle Scholar
  14. Franzmann, P. D., and Tindall, B. J., 1990, A chemotaxonomic study of members of the family Halomonadaceae, Syst. Appl. Microbiol. 13: 142–147.CrossRefGoogle Scholar
  15. Galbraith, L., and Wilkinson, S. G., 1991, Polar lipids and fatty acids of Pseudomonas carophylli, Pseudomonas gladioli, and Pseudomonas pickettii, J. Gen. Microbiol. 137: 197–202.CrossRefGoogle Scholar
  16. Guckert, J. B., Ringelberg, D. B., and White, D. C., 1987, Biosynthesis of trans fatty acids from acetate inthe bacterium Pseudomonas atlantica, Can. J. Microbiol. 33: 748–754.CrossRefGoogle Scholar
  17. Hastie, A. T., Hingley, S. T., Higgins, M. L., Kueppers, F., and Shryok T., 1986, Rhamnolipid from Pseudomonas aeruginosa inactivates mammaliam trachéal ciliary axonemes, Cell. Motil. Cytoskeleton 6: 502–509.CrossRefPubMedGoogle Scholar
  18. Heipieper, H.-J., Deifenbach, R., and Keweloh, H., 1992, Conversion of cis unsaturated ratty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas P8 from substrate toxicity, Appl. Environ. Microbiol. 58: 1847–1852.PubMedGoogle Scholar
  19. Heipieper, H.-J., and de Bont, J. A. M., 1994, Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes, Appl. Environ. Microbiol. 60: 4440–4444.PubMedGoogle Scholar
  20. Huijberts, G. N. M., DeRijk, T. C, de Waard, P., and Eggink G., 1994, 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkoanate) synthesis, J. Bacteriol. 176: 1661–1666.PubMedGoogle Scholar
  21. Huijberts, G. N. M., Eggink, G., de Waard, P., Huisman, G. W, and Witholt, B., 1992, Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkoa-nates) consisting of saturated and unsaturated monomers, Appl. Environ. Microbiol. 58: 536–544.PubMedGoogle Scholar
  22. Jacques, N. A., 1981, Studies on cyclopropane fatty acid synthesis: Correlation between the state of reduction of respiratory components and the accumulation of méthylene hexadecanoic acid by Pseudomonas denitrificans, Biochim. Biophys. Acta 665: 270–282.CrossRefPubMedGoogle Scholar
  23. Jacques, N. A., and Hunt, A. L., 1989, Studies on cyclopropane fatty acid synthesis. Effect of carbon source and oxygen tension on cyclopropane fatty acid synthetase activity in Pseudomonas denitrificans, Biochim. Biphys. Acta 619: 453–470.Google Scholar
  24. Janse, J. D., 1991, infra and intraspecific classification of Pseudomonas solanacearum strains, using whole-cell fatty acid analysis, Syst. Appl. Microbiol. 14: 335–345.CrossRefGoogle Scholar
  25. Janse, J. D., 1991, Pathovar discrimination within Psendomonas syringae subsp. savastanoi using whole cell fatty acids and pathogenicity as criteria, Syst. Appl. Microbiol. 14: 79–84.CrossRefGoogle Scholar
  26. Karunaratne, D. N., Richards, J. C, and Hancock, R. E. W., 1992, Characterization of Lipid A from Pseudomonas aeruginosa O-antigenic B-band lipopolysaccharide by 1D and 2D NMR and mass spectral analysis, Arch. Biochem. Biophys. 299: 268–376.CrossRefGoogle Scholar
  27. Kenward, M. A., Alcock, S. R., and Brown, M. R., 1980, Effects of hyperbaríc oxygen on the growth and properties of Pseudomonas aeruginosa, Microbios 28: 47–60.PubMedGoogle Scholar
  28. Kharami, A., Bibi, Z., Neilson, H., Holby, N., and Doring, G., 1989, Effect of Pseudomonas aeruginosa rhamnolipid on human neutrophil and monocyte function, APMIS 97: 1–68–1072.CrossRefGoogle Scholar
  29. Kieft, T. L., Ringelberg, D. B., and White D. C, 1994, Changes in ester-linked fatty acid profiles of subsurface bacteria during starvation and dessication in a porous medium, Appl. Environ. Microbiol. 60: 3292–3299.PubMedGoogle Scholar
  30. Kochi, M., Weiss, D. W, Pugh, L. H., and Groupe, V., 1951, Viscosin, a new antibiotic, Bact. Proc. 29-30.Google Scholar
  31. Kropinski, A. M. B., Lewis, V., and Berry, D., 1987, Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO, J. Bacteriol. 169: 1960–1966.PubMedGoogle Scholar
  32. Latifi, A., Winson, M. D., Foglino, M., Bycroft, B. W, Stewart, G. S., Lazdunski, A., and Williams, P., 1995, Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1, Mol. Microbiol. 17: 333–343.CrossRefPubMedGoogle Scholar
  33. Laycock, M. V., Hildebrand, P. D., Thibault, P., Walter, J. A., and Wright, J. L. C, 1991, Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens, J. Agri. Food Chem. 39: 483–489.CrossRefGoogle Scholar
  34. Lee, E. Y., Jendrossek, D., Schirmer, A., Choi, C. Y., and Steinbuchel, A., 1995, Biosynthesis of copolyesters consisting of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids from 1,3-butanediol or from 3-hydroxybutyrate by Pseudomonas sp. A33, Appl. Microbiol. Biotechnol. 42: 901–909.CrossRefGoogle Scholar
  35. Mayer, H., Krauss, J. H., Urbanik-Sypniewska, T., Puvanesarajah, V., Stacey, G., and Auling, G., 1989, Lipid A with 2,3-diamino-2,3-dideoxy-glucose in lipopolysaccharides from slow-growing members of Rhizobiaceae and “Pseudomonas carboxydovarans,” Arch. Microbiol. 151: 111–116.CrossRefPubMedGoogle Scholar
  36. Michea-Hamzehpour, M., Furet, Y. X., and Pechere, J.-C, 1991, Role of protein D2 and lipopolysaccharide in diffusion of quinolones through the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 35(10): 2091–2097.CrossRefPubMedGoogle Scholar
  37. Minnikin, D. E., and Abdolrahimzadeh, H., 1974, The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescens NCMB 129, FEBS Lett. 43: 257–260.CrossRefPubMedGoogle Scholar
  38. Monteoliva-Sanchez, M., and Ramos-Cormenzana, A., 1987, Cellular fatty acid composition in moderately halophilic gram-negative rods, J. Appl. Bacteriol. 62: 361–366.CrossRefGoogle Scholar
  39. Neu, T. R., Hartner, T., and Poralla, K., 1990, Surface active properties of viscosin: A peptidolipid antibiotic, Appl. Microbiol. Biotechnol. 32: 518–520.Google Scholar
  40. Norris, M. J., Rogers, D. T., and Russell, A. D., 1985, Cell envelope composition and sensitivity of Proteus Mirabilus, Pseudomonas aeruginosa, and Serratia marcescens to polymixin and other antibacterial agents, Lett. Appl. Microbiol. 1: 3–6.CrossRefGoogle Scholar
  41. Ochsner, U. A., and Reiser, J., 1995, Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA 92: 6424–6428.CrossRefPubMedGoogle Scholar
  42. Passador, L., Cook, J. M., Gambello, M. J., Rust, L., and Iglewski, B. H., 1993, Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication, Science 260: 1127–1130.CrossRefPubMedGoogle Scholar
  43. Pearson, J. P., Passador, L., Iglewski, B. H., and Greenberg, E. P., 1995, A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA 92: 1490–1494.CrossRefPubMedGoogle Scholar
  44. Pinkart, H. C, Wolfram, J., Rogers, R., and White D. C, 1995, Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene, Appl. Environ. Microbiol. 62: 1129–1132.Google Scholar
  45. Preusting, H., Kingma, J., Huisman, G. W, Steinbuchel, A., and Witholt, B., 1992, Formation of polyester blends by a recombinant strain of Pseudomonas oleovorans: Different poly(3-hydroxyalkoantes) are stored in separate granules, J. Environ. Polym. Degradation 1: 11–21.CrossRefGoogle Scholar
  46. Rendell, N. B., Taylor, G. W, Somerville, M., Todd, H., Wilson, R., and Cole, P. J., 1990, Characterization of Pseudomonas rhamnolipids, Biochim. Biophys. Acta 1045: 189–193.CrossRefPubMedGoogle Scholar
  47. Rosello-Mora, R. A., Lalucat, J., Dott, W., and Kampfer, P., 1994, Biochemical and chemotaxonomic characterization of Pseudomonas stutzen genomovars, J. Appl. Bacteriol. 76: 226–233.CrossRefGoogle Scholar
  48. Roussel, J. and Asselineau, J., 1980, Fatty acid composition of the lipids of Pseudomonas mildenbergii: Presence of a fatty acid containing two conjugated double bonds, Biochim. Biophys. Acta 619: 689–692.CrossRefPubMedGoogle Scholar
  49. Segers, P., Vancanneyt, M., Pot, B., Torck, U., Hoste, B., Dewettinck, D., Falsen, E., Kersters, K., and de Vos, P., 1994, Classification of Pseudomonas diminuta (Leifson and High 1954) and Pseudomonas vesicularis (Busing, Doll and Freytag 1953) in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively, Int. J. Syst. Bacteriol. 44: 499–510.CrossRefPubMedGoogle Scholar
  50. Sikkema, J., Weber, F. J., Heipieper, H. J., and de Bont, J. A. M., 1994, Cellular toxicity of lipophilic compounds: Mechanisms, implications, and adaptations, Biocatalysis 10: 113–122.CrossRefGoogle Scholar
  51. Sikkema, J., de Bont, J. A. M., and Poolman, B., 1995, Mechanisms of membrane toxicity of hydrocarbons, Microbiol. Rev. 59: 201–222.PubMedGoogle Scholar
  52. Somerville, M., Taylor, G. W, Watson, D., Rendell, N. B., Rutman, A., Todd, H., Davies, J. R., Wilson, R., Cole, P., and Richardson, P. S., 1992, Release of mucus glycoconjugates by Pseudomonas aeruginosa rhamnolipid into feline trachea in vivo and human bronchus in vitro, Am. J. Respir. Cell. Mol. Biol. 6: 116–122.CrossRefPubMedGoogle Scholar
  53. Stead, D. E., 1992, Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles, Int. J. Syst. Bacteriol. 42: 281–295.CrossRefGoogle Scholar
  54. Steinbuchel, A., Hustede, E., Leibergesell, M., Pieper, U., Timm, A., and Valentin, H., 1992, Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria, FEMS Microbiol. Rev. 103: 217–230.Google Scholar
  55. Syldatk, C, Lang, S., Matulovik, U., and Wagner, F., 1985, Production of four interfacial active rhamnolipids from N-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874, Z. Naturforsch. 40: 61–67.Google Scholar
  56. Takeuchi, M., Sawada, W, Oyaizu, H., and Yolota, A., 1994, Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria, Int. J. Syst. Bacteriol. 44: 308–314.CrossRefPubMedGoogle Scholar
  57. Taylor, C. J., Carrick, B. J., Galbraith, L., and Wilkinson, S. G., 1993, Polar lipids of Pseudomonas diazotrophicus, FEMS Microbiol. Lett. 106: 65–70.CrossRefGoogle Scholar
  58. Timm, A., and Steinbuchel, A., 1992, Cloning and molecular analysis of the poly(3-hy-droxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1, FEBS Eur. J. Biochem. 209: 15–30.CrossRefGoogle Scholar
  59. Van Dyke, M. W., Couture, P., Brauer, M., Lee, H., and Trevors, J. T., 1993, Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: Structural characterization and their use in removing hydrophobic compounds from soil, Can. J. Microbiol. 39: 1071–1078.CrossRefPubMedGoogle Scholar
  60. Wada, M., Fukunaga, N., and Sasaki, S., 1987, Effect of growth temperature on phospholipid and fatty acid composition in a phychrotrophic bacterium, Pseudomonas sp. strain E-3, Plant Cell. Physiol. 28: 1209–1217.Google Scholar
  61. Weber, F. J., Isken, S., and de Bont, J. A. M., 1994, Cis/trans isomerization of fatty acids as a defense mechanism of Pseudomonas putida strains to toxic concentrations of toluene, Microbiology 140: 2013–2017.CrossRefPubMedGoogle Scholar
  62. White, D. C, Sutton, S. D., and Ringleberg, D. B., 1996, The genus Sphingomonas: Physiology and ecology, Current Opinion in Biotechnology, July.Google Scholar
  63. Wilkinson, S. G., 1988, Gram-negative bacteria, in: Microbial Lipids (C. Ratledge and S. G. Wilkinson eds.), Academic Press, San Diego, Vol. 1, pp. 333–348.Google Scholar
  64. Wilkinson, S. G., Galbraith, L., and Lightfoot, G. A., 1973, Cells walls, lipids, and lipopolysaccharides of Pseudomonas species, Eur. J. Biochem. 33: 158–174.CrossRefPubMedGoogle Scholar
  65. Winson M. K., Camara, M., Latifi, A., Foglino, M., Chabra, S. R., Daykin, M., Bally, M., Chapon, V, Salmond, G. P., and Bycroft, B. W, 1995, Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA 92: 9427–9431.CrossRefPubMedGoogle Scholar
  66. Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T., and Yamamoto, Y, 1990, Proposals of Sphingomonas paucimobilis gen. nov. and comb., nov. Sphingomonas parapaucimobilis sp. Nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas, Microbiol. Immunol. 34: 99–119.PubMedGoogle Scholar
  67. Yabuuchi, E., Kosako, Y., Arakawa, M., Hotta, H., and Yano, I., 1992, Identification of Oklahoma isolate as a strain of Pseudomonas pseudomallei, Microbiol. Immunol. 36: 1239–1249.PubMedGoogle Scholar
  68. Yabuuchi, E., Kosaka, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, H., Ezaki, T., and Arakawa, M., 1994, Proposal of Burkholderia gen. nov. and transfer of seven species of the Pseudomonas hoimology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb, nov., Microbiol. Immunol. 36: 1251–1275.Google Scholar
  69. Zhang, Y, and Miller, R. M., 1992, Enhanced octadecane dispersion and biodégradation by a Pseudomonas rhamnolipid (biosurfactant), Appl. Env. Microbiol. 58: 3276–3282.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Holly C. Pinkart
    • 1
  • David C. White
    • 2
  1. 1.Microbial Ecology BranchU.S. Environmental Protection AgencyGulf BreezeUSA
  2. 2.Department of Microbiology and Center for Environmental BiotechnologyUniversity of TennessseeKnoxvilleUSA

Personalised recommendations