Advertisement

Pseudomonas pp 73-110 | Cite as

Polysaccharides

Lipopolysaccharide and Capsular Polysaccharide
  • Estelle J. McGroarty
Part of the Biotechnology Handbooks book series (BTHA, volume 10)

Abstract

In the study of polysaccharides from Pseudomonas, the two most commonly examined species are Pseudomonas aeruginosa and Pseudomonas syringae. The fluorescent pseudomonads that are phytopathogenic are collectively classified as P. syringae and contain more than 40 distinct pathovars (Young et al., 1978). These pathovars damage many agriculturally important plants (Gvozdyak et al., 1989) and generally possess a narrow host range (Fahy and Loyd, 1983). Pseudomonas aeruginosa is commonly found in aquatic environments, and its high adaptive potential is reflected in its importance as an opportunistic animal pathogen. Infections of the respiratory tract, urinary tract, burn wounds, and blood are often lethal (Cross et al., 1983). In patients with cystic fibrosis (CF), P. aeruginosa causes chronic pulmonary infections which are resistant to antibiotic therapy, making this pathogen the major cause of morbidity and mortality in these patients (Thomassen et al., 1987). Cell envelope components may be critical for the pathogenicity of these pseudomonads. Because the literature on these structures is more complete, the structures of the envelope polysaccharides from P. aeruginosa are presented in detail in this review. The structures of polysaccharides from other species, especially the lipopolysaccharide (LPS) of P. syringae, are also presented for comparison.

Keywords

Cystic Fibrosis Pseudomonas Aeruginosa Cystic Fibrosis Patient Uronic Acid Outer Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alms, T. H., and Bass, J. A., 1965, Mouse protective antigen from Pseudomonas aeruginosa, Tex. Rep. Biol. Med. 23: 140.Google Scholar
  2. Ames, P., DesJardins, D., and Pier, G. B., 1985, Opsonophagocytic killing activity of rabbit antibody to Pseudomonas aeruginosa mucoid exopolysaccharide, Infect. Immun. 49: 281–285.PubMedGoogle Scholar
  3. Arsenault, T. L., Hughes, D. W., MacLean, D. B., Szarek, W. A., Kropinski, A. M. B., and Lam, J. S., 1991, Structural studies on the polysaccharide portion of “A-band” li-popolysaccharide from a mutant (AK1401) of Pseudomonas aeruginosa strain PAO1, Can. J. Chem. 69: 1273–1280.Google Scholar
  4. Arsenis, G., and Dimitracopoulos, G., 1986, Chemical composition of the extracellular slime glycolipoprotein of Pseudomonas aeruginosa and its relation to gentamicin resistance, J. Med. Microbiol. 21: 199–202.PubMedGoogle Scholar
  5. Baker, N. R., 1990, Adherence and the role of alginate, in: Pseudomonas Infection and Alginates. Biochemistry, Genetics and Pathology (P. Gacesa and N. J. Russell, eds.), Chapman and Hall, New York, pp. 95–108.Google Scholar
  6. Baltimore, R. S., and Mitchell, M., 1980, Immunologie investigations of mucoid strains of Pseudomonas aeruginosa: Comparison of susceptibility to opsonic antibody in mucoid and nonmucoid strains, J. Infect. Dis. 141: 238–247.PubMedGoogle Scholar
  7. Bartell, P. F., Orr, T. E., and Chudio, B., 1970, Purification and chemical composition of the protective slime antigens of Pseudomonas aeruginosa, Infect. Immun. 2: 543–548.PubMedGoogle Scholar
  8. Barton-Willis, P. A., Wang, M. C, Staskawicz, B., and Keen, N. T., 1987, Structural studies on the O-chain polysaccharides of lipopolysaccharides from Pseudomonas syringae pv glycinae, Physiol. Mol. Plant Pathol. 30: 187–197.Google Scholar
  9. Bayer, A. S., Park, S., Ramos, M. C, Nast, C. C, Eftekhar, F., and Schiller, N. L., 1992, Effects of alginase on the natural history and antibiotic therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa, Infect. Immun. 60: 3979–3985.PubMedGoogle Scholar
  10. Berry, D., and Kropinski, A. M., 1986, Effect of lipopolysaccharide mutations and temperature on plasmid transformation efficiency in Pseudomonas aeruginosa, Can. J. Microbiol. 32: 436–438.PubMedGoogle Scholar
  11. Bhat, R., Marx, A., Galanos, C., and Conrad, R. S., 1990, Structural studies of lipid A from Pseudomonas aeruginosa PAO1: Occurrence of 4-amino-4-deoxyarabinose, J. Bacteriol. 172: 6631–6636.PubMedGoogle Scholar
  12. Bodey, G. P., Bolivar, R., Fainstein, V., and Jadeja, L., 1987, Infections caused by Pseudomonas aeruginosa, Pediatr. Res. 22: 429–431.Google Scholar
  13. Boyd, A., and Chakrabarty, A. M., 1994, Role of alginate lyase in cell detachment of Pseudomonas aeruginosa, Appl. Environ. Microbiol. 60: 2355–2359.PubMedGoogle Scholar
  14. Boyd, A., Ghosh, M., May, T. B., Shinabarger, D., Keogh, R., and Chakrabarty, A. M., 1993, Sequence of the algL gene of Pseudomonas aeruginosa and purification of its alginate lyase product, Gene 131: 1–8.PubMedGoogle Scholar
  15. Brown, M. R. W, and Richards, R. M. E., 1964, Effect of polysorbate (Tween) 80 on the resistance of Pseudomonas aeruginosa to chemical inactivation, J. Pharm. Pharmacol. London 16: Supplement, 51T–55T.Google Scholar
  16. Brown, M. R. W., Foster, J. H. S., and Clamp, J. R., 1969, Composition of Pseudomonas aeruginosa slime, Biochem. J. 112: 521–525.PubMedGoogle Scholar
  17. Bryan, L. E., Kureishi, A., and Rabin, H. R., 1983, Detection of antibodies to Pseudomonas aeruginosa alginate extracellular polysaccharide in animal and cystic fibrosis patients by ELISA, J. Clin. Microbiol. 18: 276–282.PubMedGoogle Scholar
  18. Bryan, L. E., O’Hara, K., and Wong, S., 1984, Lipopolysaccharide changes in impermeability-type aminoglycoside resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 26: 250–255.PubMedGoogle Scholar
  19. Ceri, H., McArthur, H. A. I., and Whitfield, C., 1986, Association of alginate from Pseudomonas aeruginosa with two forms of heparin-binding lectin from rat lung, Infect. Immun. 51: 1–5.PubMedGoogle Scholar
  20. Chester, I. R., and Meadow, P. M., 1975, Heterogeneity of the lipopolysaccharide from Pseudomonas aeruginosa, Eur. J. Biochem. 58: 273–282.PubMedGoogle Scholar
  21. Chitnis, C. E., and Ohman, D. E., 1990, Cloning of Pseudomonas aeruginosa algG, which controls alginate structure, J. Bacteriol. 172: 2894–2900.PubMedGoogle Scholar
  22. Chitnis, C. E., and Ohman, D. E., 1993, Genetic analysis of the alginate biosynthetic cluster of Pseudomonas aeruginosa shows evidence of an operonic structure, Mol. Microbiol. 8: 583–590.PubMedGoogle Scholar
  23. Cho, Y., Tanamoto, K.-I., Oh, Y., and Homma, J. Y, 1979, Difference of chemical structures of Pseudomonas aeruginosa lipopolysaccharide essential for adjuvanticity and antitumor and interferon-inducing activities, FEBS Lett. 105: 120–122.PubMedGoogle Scholar
  24. Chu, L., May, T. B., Chakrabarty, A. M., and Misra, T. K., 1991, Nucleotide sequence and expression of the algE gene involved in alginate biosynthesis by Pseudomonas aeruginosa, Gene 107: 1–10.PubMedGoogle Scholar
  25. Costerton, J. W., and Marrie, T. J., 1983, The role of the bacterial glycocalyx in resistance to antimicrobial agents, in: Medical Microbiology. Vol 3. Role of the Envelope in the Survival of Bacterial in Infection (C. S. F. Easmon et al., eds.), Academic Press, New York, pp. 63–85.Google Scholar
  26. Costerton, J. W., Brown, M. R. W., Lam, J., Lam, K., and Cochrane, D. M. G., 1990, The microcolony mode of growth in vivo—an ecological perspective, in: Pseudomonas Infection and Alginates. Biochemistry, Genetics and Pathology (P. Gacesa and N.J. Russell, eds.), Chapman and Hall, New York, pp. 76–94.Google Scholar
  27. Coughlin, R. T., Tonsager, S., and McGroarty, E. J., 1983a, Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli, Biochemistry 22: 2002–2007.PubMedGoogle Scholar
  28. Coughlin, R. T., Haug, A., and McGroarty, E. J., 1983b, Physical properties of defined lipopolysaccharide salts, Biochemistry 22: 2007–2013.PubMedGoogle Scholar
  29. Coyne, M. J., Jr., Russell, K. S., Coyle, C. L., and Goldberg, J. B., 1994, The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase required for the synthesis of a complete lipopolysaccharide core, J. Bacteriol. 176: 3500–3507.PubMedGoogle Scholar
  30. Cross, A., Allen, J. R., Burke, J., Ducei, G., Harris, A., John, J., Johnson, D., Lew, M., MacMillan, B., Meers, P., Skalova, R., Wenzel, R., and Tenney, J., 1983, Nosocomial infections due to Pseudomonas aeruginosa: Review of recent trends, Rev. Infect. Dis. 5 (Suppl.): S837–S845.PubMedGoogle Scholar
  31. Cryz, S. J., Jr., Pitt, T. L., Fürer, E., and Germanier, R., 1984, Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa, Infect. Immun. 44: 508–513.PubMedGoogle Scholar
  32. Cryz, S. J., Jr., Meadow, P. M., Fürer, E., and Germanier, R., 1985, Protection against fatal Pseudomonas aeruginosa sepsis by immunization with smooth and rough lipopolysaccharides, Eur. J. Clin. Microbiol. 4: 180–185.PubMedGoogle Scholar
  33. Darzins, A., Frantz, B., Vanags, R. I., and Chakrabarty, A. M., 1986, Nucleotide sequence analysis of the phosphomannose isomerase gene (pmi) of Pseudomonas aeruginosa and comparison with the corresponding Escherichia coli manA gene, Gene 42: 293–302.PubMedGoogle Scholar
  34. Das, S., Ramm, M., Kochanowski, H., and Basu, S., 1994, Structural studies of the side chain of outer membrane lipopolysaccharide from Pseudomonas syringae pv coriandricola W-43, J. Bacteriol. 176: 6550–6557.PubMedGoogle Scholar
  35. Dasgupta, T., and Lam, J. S., 1995, Identification of rfbA, involved in B-band lipopolysaccharide biosynthesis in Pseudomonas aeruginosa serotype O5, Infect. Immun. 63: 1674–1680.PubMedGoogle Scholar
  36. Dasgupta, T., DeKievit, T. R., Masoud, H., Altman, E., Richards, J. C, Sadovskaya, I., Speert, D. P., and Lam, J. S., 1994, Characterization of lipopolysaccharide-deficient mutants of Pseudomonas aeruginosa derived from serotypes O3, O5, and O6, Infect. Immun. 962: 809–817.Google Scholar
  37. Davidson, I. W., Sutherland, I. W., and Lawson, C. J., 1977, Localization of O-acetyl groups in bacterial alginate, J. Gen. Microbiol. 98: 603–606.Google Scholar
  38. Davies, D. G., Chakrabarty, A. M., and Geesey, G. G., 1993, Exopolysaccharide production in biofilms: Substratum activation of alginate gene expression by Pseudomonas aeruginosa, Appl. Environ. Microbiol. 59: 1181–1186.PubMedGoogle Scholar
  39. Day, D. F., 1980, Gentamicin-lipopolysaccharide interactions in Pseudomonas aeruginosa, Gurr. Microbiol. 4: 277–281.Google Scholar
  40. De Kevit, T. R., and Lam, J. S., 1994, Monoclonal antibodies that distinguish inner core, outer core, and lipid A regions of Pseudomonas aeruginosa lipopolysaccharide. J. Bacteriol. 176: 7129–7139.Google Scholar
  41. Delben, F., Cesaro, A., Paoletti, S., and Crescenzi, V., 1982, Monomer composition and acetyl content as main determinants of the ionization behavior of alginates, Carbohyd. Res. 100: C46–C50.Google Scholar
  42. Deretic, V., Gill, J. F., and Chakrabarty, A. M., 1987, Gene algD coding for GDP-mannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa, J. Bacteriol. 169: 351–358.PubMedGoogle Scholar
  43. Deretic, V., Mohr, C. D., and Martin, D. W., 1991, Mucoid Pseudomonas aeruginosa in cystic fibrosis: Signal transduction and histone-like elements in the regulation of bacterial virulence, Mol. Microbiol. 5: 1577–1583.PubMedGoogle Scholar
  44. Deretic, V., Shurr, M. J., Boucher, J. C, and Martin, D. W., 1994, Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: Environmental stress and regulation of bacterial virulence by alternative sigma factors, J. Bacteriol. 176: 2773–2780.PubMedGoogle Scholar
  45. DeVault, J. D., Zielinski, N. A., Berry, A., and Chakrabarty, A. M., 1988, Biochemistry, genetics and regulation of alginate synthesis by Pseudomonas aeruginosa, in: Genetics and Molecular Biology of Industrial Microorganisms (C. L. Hershberger, S. W. Queener, and G. Hegeman, eds.), American Society for Microbiology, Washington, D.C., pp. 200–214.Google Scholar
  46. DeVault, J. D., Berry, A., Misra, T. K., and Chakrabarty, A. M., 1989, Environmental sensory signals and microbial pathogenesis: Pseudomonas aeruginosa infection in cystic fibrosis, Bio/Technology 7: 352–357.Google Scholar
  47. DeVault, J. D., Kimbara, K., and Chakrabarty, A. M., 1990, Pulmonary dehydration and infection in cystic fibrosis: Evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa, Mol. Microbiol. 4: 737–745.PubMedGoogle Scholar
  48. DeVries, C. A., and Ohman, D. E., 1994, Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in altT, encoding a putative sigma factor, and shows evidence for autoregulation, J. Bacteriol. 176: 6677–6687.PubMedGoogle Scholar
  49. Dimitracopoulos, G., and Bartell, P. F., 1979, Phage-related surface modifications of Pseudomonos aeruginosa: Effects on the biological activity of viable cells, Infect. Immun. 23: 87–93.PubMedGoogle Scholar
  50. Doggett, R. G., Harrison, G. M., and Carter, R. E., Jr., 1971, Mucoid Pseudomonas aeruginosa in patients with chronic illness, Lancet i: 236–237.Google Scholar
  51. Donnan, F. G., and Rose, R. C, 1950, Osmotic pressure, molecular weight, and viscoscity of sodium alginate, Can. J. Res. 28(B): 105–113.Google Scholar
  52. Drewry, D. T., Symes, K. S., Gray, G. W., and Wilkinson, S. G., 1975, Studies of polysaccharide fractions from the lipopolysaccharide of Pseudomonas aeruginosa NCTC 1999, Biochem. J. 149: 93–106.PubMedGoogle Scholar
  53. Eagon, R. G., 1956, Studies on polysaccharide formation by Pseudomonas fluorescens, Can. J. Microbiol. 2: 673–676.Google Scholar
  54. Eagon, R. G., 1962, Composition of an extracellular slime produced by Pseudomonas aeruginosa, Can. J. Microbiol. 8: 585–586.Google Scholar
  55. Engels, W, Enden, J., Kamps, M. A. F., and van Boven, C. P. A., 1985, Role of lipopolysaccharide in opsonization and phagocytosis of Pseudomonas aeruginosa, Infect. Immun. 49: 182–189.PubMedGoogle Scholar
  56. Evans, D. J., Alison, D. G., Brown, M. R. W., and Gilbert, P., 1991, Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms toward ciprofloxacin: Effect of specific growth rates, J. Antimicrob. Chemother. 27: 177–184.PubMedGoogle Scholar
  57. Evans, D. J., Pier, G. B., Coyne, M. J., Jr., and Goldberg, J. B., 1994, The rfb locus from Pseudomonas aeruginosa strain PA103 promotes the expression of O antigen by both LPS-rough and LPS-smooth isolates from cystic fibrosis patients, Mol. Microbiol. 13: 427–434.PubMedGoogle Scholar
  58. Fahy, P. C, and Lloyd, A. B., 1983, The fluorescence pseudomonads, in: Plant Bacterial Diseases: A Diagnostic Guide (P. C. Fahy and G. J. Persley, eds.), Academic Press, New York, pp. 144–188.Google Scholar
  59. Farber, B. F., Kaplan, M. H., and Clogston, A. G., 1990, Staphlococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics, J. Infect. Dis. 161: 37–40.PubMedGoogle Scholar
  60. Fett, W. F., Osman, S. F., Fishman, M. L., and Siebles III, T. S., 1986, Alginate production by plant-pathogenic pseudomonads, Appl. Environ. Microbiol. 52: 466–473.PubMedGoogle Scholar
  61. Fisher, F. G., and Dorfel, H., 1955, Die Polyuronsauren der Braunakgen (Kohlenhydrate der Algen I), Z. Physiol. Chem. Hoppe-Seylers 302: 186–203.Google Scholar
  62. Fisher, M. W., Devlin, H. B., and Gnabaski, F. J., 1969, New immunotype schema for Pseudomonas aeruginosa based on protective antigens, J. Bacteriol. 98: 835–836.PubMedGoogle Scholar
  63. Fomsgaard, A., Conrad, R. S., Galanos, C., Shand, G. H., and Høiby, N., 1988, Comparative immunochemistry of lipopolysaccharides from typable and polyagglutinable Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis, J. Clin. Microbiol. 26: 821–826.PubMedGoogle Scholar
  64. Fomsgaard, A., Dinesen, B., Shand, G. H., Pressler, T., and Høiby, N., 1989, Antilipopolysaccharide antibodies and differential diagnosis of chronic Pseudomonas aeruginosa lung infection in cystic fibrosis, J. Clin. Microbiol. 27: 1222–1229.PubMedGoogle Scholar
  65. Franklin, M. J., and Ohman, D. E., 1993, Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation, J. Bacteriol. 175: 5057–5065.PubMedGoogle Scholar
  66. Franklin, M. J., Chitnis, C. E., Gacesa, P., Sonesson, A., White, D. C, and Ohman, D. E., 1994, Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase, J. Bacteriol. 176: 1821–1830.PubMedGoogle Scholar
  67. Fujiwara, S., Zielinski, N. A., and Chakrabarty, A. M., 1993, Enhancer-like activity of AlgRl-binding site in alginate gene activation: Positional, orientational, and sequence specificity, J. Bacteriol. 175: 5452–5459.PubMedGoogle Scholar
  68. Gacesa, P., and Russell, N. J., 1990, The structure and properties of alginate, in: Pseudomonas Infection and Alginates. Biochemistry, Genetics and Pathology (P. Gacesa and N. R. Russell, eds.), Chapman and Hall, New York, pp. 29–49.Google Scholar
  69. Gaston, M. A., Vale, T. A., Wright, B., Cox, P., and Pitt, T. L., 1986, Monoclonal antibodies to the surface antigens of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 37: 357–361.Google Scholar
  70. Gilleland, H. E., and Conrad, R. S., 1980, Effects of carbon sources on chemical composition of cell envelopes of Pseudomonas aeruginosa in association with polymyxin resistance, Antimicrob. Agents Chemother. 17: 623–628.PubMedGoogle Scholar
  71. Goldberg, J. B., and Ohman, D. E., 1987, Construction and characterization of Pseudomonas aeruginosa algB mutants: Role of algB in high-level production of alginate, J. Bacteriol. 169: 1593–1602.PubMedGoogle Scholar
  72. Goldberg, J. B., Hatano, K., Meluleni, G. M., and Pier, G. B., 1992, Cloning and surface expression of Pseudomonas aeruginosa O antigen in Escherichia coli, Proc. Nati. Acad. Sci. USA 89: 10716–10720.Google Scholar
  73. Goldberg, J. B., Hatano, K., and Pier, G. B., 1993, Synthesis of lipopolysaccharide O side chains by Pseudomonas aeruginosa PAO1 requires the enzyme phosphomannomutase, J. Bacteriol. 175: 1605–1611.PubMedGoogle Scholar
  74. Goldman, R. C, White, D., Ørskov, F., Ørskov, I., Rick, P. D., Lewis, M. S., Bhattacharjee, A. K., and Leive, L., 1982, A surface polysaccharide of Escherichia coli 0111 contains O-antigen and inhibits agglutination of cells by O-antiserum, J. Bacteriol. 151: 1210–1221.PubMedGoogle Scholar
  75. Gorin, P. A. T., and Spencer, J. F. T., 1966, Exocellular alginic acid from Azotobacter vinekndii, Can. J. Chem. 44: 993–998.Google Scholar
  76. Govan, J. R. W, 1975, Mucoid strains of Pseudomonas aeruginosa: The influence of culture medium on the stability of mucus production, J. Med. Microbiol. 8: 513–522.PubMedGoogle Scholar
  77. Govan, J. R. W, Fyfe, J. A. M., and Jarman, T. R., 1981, Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida, and Pseudomonas mendocina, J. Gen. Microbiol. 125: 217–220.PubMedGoogle Scholar
  78. Grabert, E., Wingender, J., and Winkler, U. K., 1990, An outer membrane protein characteristic of mucoid strains of Pseudomonas aeruginosa, FEMS Microbiol. Lett. 68: 83–88.Google Scholar
  79. Gross, M., Mayer, H., Widemann, C., and Rudolph, K., 1988, Comparative analysis of the lipopolysaccharides of a rough and a smooth strain of Pseudomonas syringae pv phaseolicola, Arch. Microbiol 149: 372–376.Google Scholar
  80. Gupta, S. K., Berk, R. S., Masinick, S., and Hazlett, L. D., 1994, Pili and lipopolysaccharide of Pseudomonas aeruginosa bind to the glycolipid asialo GM1, Infect. Immun. 62: 4572–4579.PubMedGoogle Scholar
  81. Gvozdyak, R. I., Yakovleva, L. M., Gubanova, N. Ya., Zakharova, I. Ya., and Zdorovenko, G. M., 1989, Lipopolysaccharides from pathovars of Pseudomonas syringae pv. atrofaciens, in: Proceedings of the 7th International Conference on Plant Pathogenic Bacteria (Z. Kiemen, ed.), Akadémiai Kiadó, Budapest, Hungary, pp. 131–136.Google Scholar
  82. Habs, I., 1957, Untersuchungen über die O-antigene von Pseudomonas aeruginosa, Z. Hyg. Infectionskr. 144: 218–228.Google Scholar
  83. Hancock, R. E. W., 1984, Alterations in outer membrane permeability, Ann. Rev. Microbiol. 38: 237–264.Google Scholar
  84. Hancock, R. E. W, Mutharia, L. M., Chan, L., Darveau, R. P., Speert, D. P., and Pier, G. B., 1983, Pseudomonas aeruginosa isolates from patients with cystic fibrosis: A class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains, Infect. Immun. 42: 170–177.PubMedGoogle Scholar
  85. Hatano, K., Goldberg, J. B., and Pier, G. B., 1993, Pseudomonas aeruginosa lipopolysaccharide: Evidence that the O side chains and common antigen are on the same molecule, J. Bacteriol 175: 5117–5128.PubMedGoogle Scholar
  86. Hatano, T., Goldberg, J. B., and Pier, G. B., 1995, Biologic activities of antibodies to the neutral-polysaccharide component of the Pseudomonas aeruginosa lipopolysaccharide are blocked by O side chains and mucoid exopolysaccharide (alginate), Infect. Immun. 63: 21–26.PubMedGoogle Scholar
  87. Haug, A., and Larsen, B., 1961, Separation of uronic acids by paper electrophoresis, Acta Chem. Scan. 15: 1395–1396.Google Scholar
  88. Haug, A., and Larsen, B., 1971, Biosynthesis of alginate: Part II. Polymannuronic acid C5-epimerase from Azotobacter vinelandii (Lipman), Carbohyd. Res. 17: 297–308.Google Scholar
  89. Haynes, W. C., 1951, Pseudomonas aeruginosa—its characterization and identification, J. Gen. Microbiol. 5: 939–950.PubMedGoogle Scholar
  90. Høiby, N., 1974a, Epidemiological investigations of the respiratory tract bacteriology in patients with cystic fibrosis, Acta Pathol. Microbiol. Scand. B 82: 541–550.Google Scholar
  91. Høiby, N., 1974b, Pseudomonas aeruginosa infection in cystic fibrosis: Relationship between mucoid strains of Pseudomonas aeruginosa and the humoral immune response, Acta Pathol. Microbiol. Scand. B 82: 551–558.Google Scholar
  92. Høiby, N., and Axelsen, N. H., 1973, Identification and quantitation of precipitins against Pseudomonas aeruginosa in patients with cystic fibrosis by means of crossed immunoelectrophoresis with intermediate gel, Acta Pathol. Microbiol. Scand. B 81: 298–308.Google Scholar
  93. Homma, J. Y., 1976, A new antigenic schema and live-cell slide-agglutination procedure for the infrasubspecific serologie classification of Pseudomonas aeruginosa, Jpn J. Exp. Med. 46: 329–336.Google Scholar
  94. Homma, J. Y., 1982, Designation of the thirteen O-group antigens of Pseudomonas aeruginosa; an amendment for the tentative proposals in 1976, Jap. J. Exp. Med. 52: 317–320.PubMedGoogle Scholar
  95. Horton, D., Rodemeyer, G., and Haskell, T., 1977, Analytical characterization of lipopolysaccharide antigens from seven strains of Pseudomonas aeruginosa, Carbohyd. Res. 55: 35–47.Google Scholar
  96. Huang, N. N., and Doggett, R. G., 1979, Antibiotic therapy of Pseudomonas aeruginosa, in: Pseudomonas aeruginosa: Clinical Manifestations of Infection and Current Therapy (R. G. Doggett, ed.), Academic Press, New York, pp. 411–444.Google Scholar
  97. Jarrell, K. F., and Kropinski, A. M., 1977, The chemical composition of the lipopolysaccharide from Pseudomonas aeruginosa PAO and a spontaneously derived rough mutant, Microbios 19: 103–116.PubMedGoogle Scholar
  98. Jarrell, K. F., and Kropinski, A. M., 1981, Pseudomonas aeruginosa bacteriophage φPLS27 lipopolysaccharide interactions, J. Virol. 40: 411–420.PubMedGoogle Scholar
  99. Kadurugamuwa, J. L., Lam, J. S., and Beveridge, T. J., 1993, Interaction of gentamicin with the A band and B band lipopolysaccharides of Pseudomonas aeruginosa and its possible lethal effects, Antimicrob. Agents Chemother. 37: 715–721.PubMedGoogle Scholar
  100. Karunaratne, D. N., Richards, J. C., and Hancock, R. E., 1992, Characterization of lipid A from Pseudomonas aeruginosa O-antigenic B band lipopolysaccharide by 1D and 2D NMR and mass spectral analysis, Arch. Biochem. Biophys. 299: 368–376.PubMedGoogle Scholar
  101. Kato, J., Misra, T. K., and Chakrabarty, A. M., 1990, Alg R3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA 87: 2887–2891.PubMedGoogle Scholar
  102. Knirel, Y. A., 1990, Polysaccharide antigens of Pseudomonas aeruginosa, Crit. Rev. Microbiol. 17: 217–304.Google Scholar
  103. Knirel, Y. A., Zdorovenko, G. M., Dashunin, V. M., Yakoleva, L. M., Shashkov, A. S., Zakharova, I. Y, Gvozdiak, R. I., and Kochetkov, N. K., 1986, Antigenic polysaccharide of bacteria. 15. Structure of the repeating unit of O-specific polysaccharide chain of Pseudomonas wieringae lipopolysaccharide, Bioorg. Khim. 12: 1253–1262.Google Scholar
  104. Knirel, Y. A., Vinogradov, E. V., Kocharova, N. A., Paramonov, N. A., Kochetkov, N. K., Dmitriev, B. A., Stanislavsky, E. S., and Lanyi, B., 1988a, The structure of O-specific polysaccharides and serological classification of Pseudomonas aeruginosa, Acta Microbiol. Hung. 35: 3–24.PubMedGoogle Scholar
  105. Knirel, Y. A., Zdorovenko, g. M., Shashkov, A. S., Gubanova, N. I., Yakovleva, L. M., and Gvozdiak, R. I., 1988b, Antigenic polysaccharide of bacteria. 27. Structure of the O-specific polysaccharide chain of lipopolysaccharides from Pseudomonas syringae pv atrofaciens 2399, phaseolicola 120a, and Pseudomonas holci 8299, belonging to serogroup VI, Bioorg. Khim. 14: 92–99.PubMedGoogle Scholar
  106. Knirel, Y. A., Zdorovenko, G. M., Shashkov, A. S., Mamyan, S. S., Gubanova, N. I., and Solyanik, L. P., 1988c, Antigenic polysaccharide of bacteria. 30. Structure of the polysaccharide chain of the Pseudomonas syringae pv. syringae 281 (serogroup I) lipopolysaccharide, Bioorg. Khim. 14: 166–171.PubMedGoogle Scholar
  107. Knirel, Y. A., Zdorovenko, G. M., Yakovleva, L. M., Shashkov, A. S., Solyanik, L. P., and Zakharova, I. Y, 1988d, Antigenic polysaccharide of bacteria. 28. Structure of the polysaccharide chain of Pseudomonas syringae pv atrofaciens K-1025 and Pseudomonas holci 90a (serogroup II), Bioorg. Khim. 14: 166–171.PubMedGoogle Scholar
  108. Knirel, Y. A., Shashkov, A. S., Paramonov, N. A., Zdorovenko, G. M., Solyanic, L. P., and Yakovleva, L. M., 1993, Somatic antigens of pseudomonads: Structure of the O-specific polysaccharide of Pseudomonas syringae pv tomato 140(R), Carbohydr. Res. 243: 199–204.PubMedGoogle Scholar
  109. Kocharova, N. A., Knirel, Y. A., Kochetokov, N. K., and Stanislavsky, E. S., 1988, Characterization of a D-rhamnan derived from preparations of Pseudomonas aeruginosa lipopolysaccharide, Bioorg. Khim. 14: 701–703.PubMedGoogle Scholar
  110. Koepp, L. H., Orr, T., and Bartell, P. F., 1981, Polysaccharide of the slime glycolipoprotein of Pseudomonas aeruginosa, Infect. Immun. 33: 788–794.PubMedGoogle Scholar
  111. Kronborg, G., Fomsgaard, A., Galanos, C., Freudenberg, M. A., and Høiby, N., 1992, Antibody responses to lipid A, core, and O sugars of Pseudomonas aeruginosa lipopolysaccharide in chronically infected cystic fibrosis patients, J. Clin. Microbiol. 30: 1848–1855.PubMedGoogle Scholar
  112. Kropinski, A. M. B., and J. S. Chadwick, J. S., 1975, The pathogenicity of rough strains of Pseudomonas aeruginosa for Galleria mellonella, Can J. Microbiol. 21: 2084–2088.PubMedGoogle Scholar
  113. Kropinski, A. M. B., Chan, L., and Milazzo, F. H., 1978, Susceptibility of lipopolysac-charide-defective mutants of Pseudomonas aeruginosa strain PAO to dyes, detergents, and antibiotics, Antimicrob. Agents Chemother. 13: 494–499.PubMedGoogle Scholar
  114. Kropinski, A. M., Jewell, B., Kuzio, J., Milazzo, F., and Berry, D., 1985, Structure and functions of Pseudomonas aeruginosa lipopolysaccharide, Antibiot. Chemother. 36: 58–73.PubMedGoogle Scholar
  115. Kropinski, A. M., Lewis, V., and Berry, D., 1987, The effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO, J. Bacteriol. 169: 1960–1966.PubMedGoogle Scholar
  116. Laharrague, P. F., Corberand, J. X., Filióla, G., Gleizes, B. J., Fontamilles, A. M., and Gyrard, E., 1984, In vitro effect of the slime of Pseudomonas aeruginosa on the function of human polymorphonuclear neutrophils, Infect. Immun. 44: 760–762.PubMedGoogle Scholar
  117. Lam, J., Chan, R., Lam, K., and Costerton, J. W., 1980, Production of mucoid micro colonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis, Infect. Immun. 28: 546–556.PubMedGoogle Scholar
  118. Lam, J. S., Mutharia, L. M., Hancock, R. E. W., Høiby, N., Lam, K., Baek, L., and Costeron, J. W., 1983, Immunogenicity of Pseudomonas aeruginosa outer membrane antigens examined by crossed immunoelectrophoresis, Infect. Immun. 42: 88–98.PubMedGoogle Scholar
  119. Lam, J. S., MacDonald, L. A., and Lam, M. Y. C, 1987a, Production of monoclonal antibodies against serotype strains of Pseudomonas aeruginosa, Infect. Immun. 55: 2854–2856.PubMedGoogle Scholar
  120. Lam, J. S., MacDonald, L. A., Lam, M. Y. C., Duscheshe, L. G. M., and Southam, G. G., 1987b, Production and characterization of monoclonal antibodies against serotype strains of Pseudomonas aeruginosa, Infect. Immun. 55: 1051–1057.PubMedGoogle Scholar
  121. Lam, M. Y. C., McGroarty, E. J., Kropinski, A. M., MacDonald, L. A., Pedersen, S. S., Høiby, N., and Lam, J. S., 1989, Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa, J. Clin. Microbiol. 27: 962–967.PubMedGoogle Scholar
  122. Lam, J. S., Handelsman, M. Y. C., Chivers, T. R., and MacDonald, L. A., 1992, Monoclonal antibodies as probes to examine serotype-specific and cross-reactive epitopes of li-popolysaccharides from serotypes O2, O5, and O16 of Pseudomonas aeruginosa, J. Bacteriol. 174: 2178–2184.PubMedGoogle Scholar
  123. Lang, A. B., Fürer, E., Larrick, J. W., and Cryz, S. J., Jr., 1989, Isolation and characterization of a human monoclonal antibody that recognizes epitopes shared by Pseudomonas aeruginosa immunotype 1, 3, 4, and 6 lipopolysaccharides, Infect. Immun. 57: 3851–3855.PubMedGoogle Scholar
  124. Lanyi, B., 1966/67, Serological properties of Pseudomonas aeruginosa, Acta Microbiol. Acad. Sci. Hung. 13: 295–318.PubMedGoogle Scholar
  125. Larsen, B., and Haug, A., 1971, Biosynthesis of alginate I. Composition and structure of alginate produced by Actobacter vinelandii, Carbohyd. Res. 17: 287–296.Google Scholar
  126. Learn, D. B., Brestel, E. P., and Seetharama, S., 1987, Hypochlorite scavenging by Pseudomonas aeruginosa alginate, Infect. Immun. 55: 1813–1818.PubMedGoogle Scholar
  127. Leitão, J. H., and Sá-Correia, I., 1993, Oxygen-dependent alginate synthesis and enzymes in Pseudomonas aeruginosa, J. Gen. Microbiol. 139: 441–445.PubMedGoogle Scholar
  128. Leitão, J. H., and Sá-Correia, I., 1995, Growth-phase-dependent alginate synthesis, activity of biosynthetic enzymes, and transcription of alginate genes in Pseudomonas aeruginosa, Arch. Microbiol. 163: 217–222.PubMedGoogle Scholar
  129. Leitão, J. H., Fialho, A. M., and Sá-Correia, I., 1992, Effects of growth temperature on alginate synthesis and enzymes in Pseudomonas aeruginosa variants, J. Gen. Microbiol. 138: 605–610.PubMedGoogle Scholar
  130. Lightfoot, J., and Lam, J. S., 1991, Molecular cloning of genes involved with expression of A-band lipopolysaccharide, an antigenically conserved form, in Pseudomonas aeruginosa, J. Bacteriol. 173: 5624–5630.PubMedGoogle Scholar
  131. Lightfoot, J., and Lam, J. S., 1993, Chromosomal mapping, expression, and synthesis of lipopolysaccharide in Pseudomonas aeruginosa: A role for guanosine diphospho(GDP)-D-mannose, Mol. Microbiol. 8: 771–782.PubMedGoogle Scholar
  132. Lin, T. Y., and Hassid, W. Z., 1966, Pathway of alginic acid synthesis in the marine brown algae Fucus gardneri silva, J. Biol. Chem. 241: 5284–5297.PubMedGoogle Scholar
  133. Linker, A., and Jones, R. S., 1966a, A new polysaccharide resembling alginic acid isolated from pseudomonads, J. Biol. Chem. 241: 3845–3851.PubMedGoogle Scholar
  134. Linker, A., and Jones, R. S., 1966b, A polysaccharide resembling alginic acid from a Pseudomonas microorganism, Nature (London) 204: 187–188.Google Scholar
  135. Liu, P. V., and Wang, S. P., 1990, Three new major somatic antigens of Pseudomonas aeruginosa, J. Clin. Microbiol. 28: 922–925.PubMedGoogle Scholar
  136. Liu, P. V., Abe, Y., and Bates, J. C, 1961, The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis, J. Infect. Dis. 108: 218–228.PubMedGoogle Scholar
  137. Liu, P. V., Matsumoto, H., Kusama, H., and Bergan, T., 1983, Survey of heat-stable major somatic antigens of Pseudomonas aeruginosa, Int. J. Syst. Bacteriol. 33: 256–264.Google Scholar
  138. Loh, B., Grant, C., and Hancock, R. E. W., 1984, Use of the fluorescent probe 1-N-phenolnaphthylamine to study the interactions of amminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 26: 546–551.PubMedGoogle Scholar
  139. Lüderitz, O., Freudenberg, M. A., Galanos, C., Lehmann, V., Rietschel, E. T., and Shaw, D. H., 1982, Lipopolysaccharides of gram-negative bacteria, Curr. Top. Membr. Transp. 17: 79–151.Google Scholar
  140. Maharaj, R., May, T. B., Wang, S.-K., and Chakrabarty, A. M., 1993, Sequence of the alg8 and alg44 genes involved in the synthesis of alginate by Pseudomonas aeruginosa, Gene 136: 267–269.PubMedGoogle Scholar
  141. Mai, G. T., Seow, W. K., Pier, G. B., McCormack, J. G., and Thong, Y. H., 1993a, Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): Reversal by physicochemical, alginase, and specific monoclonal antibody treatments, Infect. Immun. 61: 559–564.PubMedGoogle Scholar
  142. Mai, G. T, McCormack, J. G., Seow, W. K., Pier, G. B., Jackson, L. A., and Thong, Y. H., 1993b, Inhibition of adherence of mucoid Pseudomonas aeruginosa by alginase, specific monoclonal antibodies, and antibiotics, Infect. Immun. 61: 4338–4343.PubMedGoogle Scholar
  143. Makarenko, T. A., Kocharova, N. A., Edvabnaya, L. S., Tsvetkov, Y. E., Kholodkova, E. V., Knirel, Y. A., Backinowsky, L. V., Kochetkov, N. K., and Stanislavsky, E. S., 1993, Immunological studies of an artificial antigen with specificity of a common polysaccharide antigen of Pseudomonas aeruginosa, FEMS Immun. Med. Microbiol. 7: 251–256.Google Scholar
  144. Mäkelä, P. H., and Stocker, B. A. D., 1984, Genetics of lipopolysaccharide. 1984, in: Handbook of Endotoxin. Vol 1: Chemistry of Endotoxins (E. T. Reietchel, ed.), Elsevier/North-Holland Biomedicai, Amsterdam, pp. 59–137.Google Scholar
  145. Markham, R. B., and Pier, G. B., 1983, Immunologic basis for mouse protection provided by high-molecular-weight polysaccharide from immunotype 1 Pseudomonas aeruginosa, Rev. Infect. Dis. 5: S957–S962.PubMedGoogle Scholar
  146. Martin, D. W., Holloway, B. W., and Deretic, V., 1993a, Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor, J. Bacteriol. 175: 1153–1164.PubMedGoogle Scholar
  147. Martin, D. W., Shurr, M. J., Mudd, M. H., and Deretic, V., 1993b, Differentiation of Pseudomonas aeruginosa into the alginate-producing form: Inactivation of mucB causes conversion to mucoidy, Mol. Microbiol. 9: 497–506.PubMedGoogle Scholar
  148. Martin, D. W., Shurr, M. J., Mudd, M. H., Govan, J. R. W., Holloway, B. W., and Deretic, V., 1993c, Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients, Proc. Natl. Acad. Sci. USA 90: 8377–8381.PubMedGoogle Scholar
  149. Martin, D. W., Schurr, M. J., Yu, H., and Deretic, V., 1994, Analysis of promoters controlled by the putative sigma factor AlgU regulating the conversion to mucoidy in Pseudomonas aeruginosa: Relationship to σE and stress response, J. Bacteriol. 176: 6688–6696.PubMedGoogle Scholar
  150. Masoud, H., Altman, E., Richards, J. C, and Lam, J. S., 1994, A general strategy for structural analysis of the oligosaccharide region of lipooligosaccharides. Structure of the oligosaccharide component of Pseudomonas aeruginosa IATS serotype O6 mutant R5 rough-type lipopolysaccharide, Biochemistry 33: 10568–10578.PubMedGoogle Scholar
  151. Masoud, H., Sadovskaya, I., De Kievit, T., Altman, E., Richards, J. C, and Lam, J. S., 1995. Structural elucidation of the lipopolysaccharide core region of the O-chain-deficient mutant strain A28 from Pseudomonas aeruginosa serotype O6 (international antigenic typing scheme), J. Bacteriol. 177: 6718–6726.PubMedGoogle Scholar
  152. May, T. B., and Chakrabarty, A. M., 1994, Pseudomonas aeruginosa: Genes and enzymes of alginate synthesis, Trends Microbiol. 2: 151–157.PubMedGoogle Scholar
  153. McArthur, H. A. I., and Ceri, H., 1983, Interaction of a rat lung lectin with exopolysaccharides of Pseudomonas aeruginosa, Infect. Immun. 42: 574–578.PubMedGoogle Scholar
  154. McGroarty, E. J., and Rivera, M., 1990, Growth-dependent alterations in production of serotype-specific and common antigen lipopolysaccharides in Pseudomonas aeruginosa PAO1, Infect. Immun. 58: 1030–1037.PubMedGoogle Scholar
  155. Moore, R. A., Bates, N. C., and Hancock, R. E. W., 1986, Interactions of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin, Antimicrob. Agents Chemother. 29: 496–500.PubMedGoogle Scholar
  156. Narbad, A., Gacesa, P., and Russell, N. J., 1990, Biosynthesis of alginate, in: Pseudomonas Infection and Alginates. Biochemistry, Genetics and Pathogenicity (P. Gacesa and N. R. Russell, eds.), Chapman and Hall, London, pp. 181–205.Google Scholar
  157. Ørskov, I., Ørskov, F., Jann, B., and Jann, K., 1977, Serology, chemistry, and genetics of O and K antigens of Escherichia coli, Bacteriol. Rev. 41: 667–710.PubMedGoogle Scholar
  158. Osmond, S. F., Fett, W. F., and Fishman, M. L., 1986, Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. glycinea, J. Bacteriol. 166: 66–71.Google Scholar
  159. Otterlie, M., Sundan, A., Skjåk-Bræk, G. Ryan, L., Smidsrød, O., and Espevik, T., 1993, Similar mechanisms of action of defined polysaccharides and lipopolysaccharides: Characterization of binding and tumor necrosis factor alpha induction, Infect. Immun. 61: 1917–1925.Google Scholar
  160. Padgett, P. J., and Phibbs, P. V., Jr., 1986, Phosphomannomutase activity in wild-type and alginate-producing strains of Pseudomonas aeruginosa, Curr. Microbiol. 14: 187–192.Google Scholar
  161. Pastushenko, L. T., and Simonovich, I. D., 1979, Serochemical groups of phytopathogenic bacteria of Pseudomonas genus, Mikrobiol. Zh. 41: 330–339.PubMedGoogle Scholar
  162. Penketh, A., Pitt, T., Roberts, D., Hodson, M. E., and Batten, J. C, 1983, The relationship of phenotype changes in Pseudomonas aeruginosa to the clinical condition of patients with cystic fibrosis, Am. Rev. Respir. Dis. 127: 605–608.PubMedGoogle Scholar
  163. Pennington, J. E., Small, G. J., Lostrom, M. E., and Pier, G. B., 1986, Polyclonal and monoclonal antibody therapy for experimental Pseudomonas aeruginosa pneumonia, Infect. Immun. 54: 239–244.PubMedGoogle Scholar
  164. Peterson, A. A., and McGroarty, E. J., 1985, High-molecular-weight components in lipopolysaccharides of Salmonella typhimurium, Salmonella minnesota, and Escherichia coli, J. Bacteriol. 162: 738–745.PubMedGoogle Scholar
  165. Peterson, A. A., Hancock, R. E. W., and McGroarty, E. J., 1985, Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginos, J. Bacteriol. 164: 1256–1261.PubMedGoogle Scholar
  166. Phillips, I., 1969, Identification of Pseudomonas aeruginosa in the clinical laboratory, J. Med. Microbiol. 2: 9–16.PubMedGoogle Scholar
  167. Pidar, D. F., and Bücke, C., 1975, The biosynthesis of alginic acid by Azotobacter vinlandii, Biochem. J. 152:617–622.Google Scholar
  168. Pier, G. B., 1982, Safety and immunogenicity of high molecular weight polysaccharide vaccine from immunotype I Pseudomonas aeruginosa, J. Clin. Invest. 69: 303–308.PubMedGoogle Scholar
  169. Pier, G. B., 1983, Immunochemistry of Pseudomonas aeruginosa lipopolysaccharides and high-molecular-weight polysaccharides, Rev. Infect. Dis. 5: S950–S956.PubMedGoogle Scholar
  170. Pier, G. B., and Thomas, D. M., 1983, Characterization of the human immune response to polysaccharide vaccine from Pseudomonas aeruginosa, J. Infect. Dis. 148: 206–213.PubMedGoogle Scholar
  171. Pier, G. B., and Bennet, S. E., 1986, Structural analysis and immunogenicity of Pseudomónos aeruginosa immunotype 2 high molecular weight polysaccharide, J. Clin. Invest. 77: 491–495.PubMedGoogle Scholar
  172. Pier, G. B., Sidberry, H. F., and Sadoff, J. C, 1978a, Protective immunity induced in mice by immunization with high-molecular-weight polysaccharide from Pseudomonas aeruginosa, Infect. Immun. 22: 919–925.PubMedGoogle Scholar
  173. Pier, G. B., Sidberry, H. F., Zolyomi, S., and Sadoff, J. C., 1978b, Isolation and characterization of a high molecular weight polysaccharide from the slime of Pseudomonas aeruginosa, Infect. Immun. 22: 908–918.PubMedGoogle Scholar
  174. Pier, G. B., Sidberry, H. F., and Sadoff, J. C., 1981, High molecular weight polysaccharide antigen from Pseudomonas aeruginosa immunotype 2, Infect. Immun. 34: 461–468.PubMedGoogle Scholar
  175. Pier, G. B., Cohen, M., and Jennings, H., 1983, Further purification and characterization of high molecular weight polysaccharide from Pseudomonas aeruginosa, Infect. Immun. 42: 936–941.PubMedGoogle Scholar
  176. Pier, G. B., Pollack, M., and Cohen, M., 1984, Immunochemical characterization of highmolecular-weight polysaccharide from Fisher immunotype 3 Pseudomonas aeruginosa, Infect. Immun. 45: 309–313.PubMedGoogle Scholar
  177. Pier, G. B., Desjardins, D., Aguilar, T., Barnard, M., and Speert, D. P., 1986, Polysaccharide surface antigens expressed by non-mucoid isolates of Pseudomonas aeruginosa from cystic fibrosis patients, J. Clin. Microbiol. 24: 189–196.PubMedGoogle Scholar
  178. Pier, G. B., Saunders, J. M., Ames, P., Edwards, M. S., Auerbach, H., Goldfarb, J., Speert, D. P., and Hurwitch, S., 1987, Opsonophagocytic killing antibody to Pseudomonas aeruginosa mucoid exopolysaccharide in older, non-colonized cystic fibrosis patients, N. Engl. J. Med. 317: 793–798.PubMedGoogle Scholar
  179. Pier, G. B., DesJardin, D., Grout, M., Garner, C., Bennett, S. E., Pekoe, G., Fuller, S. A., Thornton, M. O., Harkonen, W. S., and Miller, H. C, 1994, Human immune response to Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) vaccine, Infect. Immun. 62: 3972–3979.PubMedGoogle Scholar
  180. Piggott, N. H., Sutherland, I. W., and Jarman, T. R., 1981, Enzymes involved in the biosynthesis of alginate by Pseudomonas aeruginosa, Eur. J. Appl. Microbiol. Biotechnol. 13: 179–183.Google Scholar
  181. Piggott, N. H., Sutherland, I. W., and Jarman, T. R., 1982, Alginate synthesis by mucoid strains of Pseudomonas aeruginosa PAO, Eur. J. Appl. Microbiol. Biotechnol. 16: 131–135.Google Scholar
  182. Raetz, C. R. H., 1987, Structure and biosynthesis of lipid A, in: Excherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (F. C. Neidhardt, ed.), ASM Publications, Washington, D.C., pp. 498–503.Google Scholar
  183. Raetz, C. R. H., 1990, Biochemistry of endotoxins, Ann. Rev. Biochem. 59: 129–170.PubMedGoogle Scholar
  184. Ramphal, R., and Pyle, M., 1983, Adherence of mucoid and non-mucoid Pseudomonas aeruginosa to acid-injured trachéal cells, Infect. Immun. 41: 345–351.PubMedGoogle Scholar
  185. Ramphal, R., and Pier, G., 1985, Role of Pseudomonas aeruginosa mucoid exopolysaccharide in adherence to trachéal cells, Infect. Immun. 47: 1–4.PubMedGoogle Scholar
  186. Rees, D. A., 1972, Shapley polysaccharides, Biochem. J. 126: 257–273.PubMedGoogle Scholar
  187. Rehm, B. H. A., Boheim, G., Tommassen, J., and Winkler, U. K., 1994, Overexpression of algE in Escherichia coli: Subcellular localization, purification, and ion channel properties, J. Bacteriol. 176: 5639–5647.PubMedGoogle Scholar
  188. Rivera, M., and McGroarty, E. J., 1989, Analysis of a common antigen lipopolysaccharide from Pseudomonas aeruginosa, J. Bacteriol. 171: 2244–2248.PubMedGoogle Scholar
  189. Rivera, M., Bryan, L. E., Hancock, R. E. W, and McGroarty, E. J., 1988a, Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: Analysis of lipopolysaccharide chain length, J. Bacteriol. 170: 512–521.PubMedGoogle Scholar
  190. Rivera, M., Hancock, R. E. W, Sawyer, J. G., Haug, A., and McGroarty, E. J., 1988b, Enhanced binding of polycationic antibiotics to lipopolysaccharide from an aminoglycoside-supersusceptible, tolA mutant strain of Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 32: 649–655.PubMedGoogle Scholar
  191. Rivera, M., Chivers, T. R., Lam, J. S., and McGroarty, E. J., 1992, Common antigen lipopolysaccharide from Pseudomonas aeruginosa AK1401 as a receptor for bacteriophage A7, J. Bacteriol. 174: 2407–2411.PubMedGoogle Scholar
  192. Rowe, P. S. N., and Meadow, P. M., 1983, Structure of the core oligosaccharide from the lipopolysaccharide of Pseudomonas aeruginosa PACIR and its defective mutants, Eur. J. Biochem. 132: 329–337.PubMedGoogle Scholar
  193. Roychoudhury, S., May, T. B., Gill, J. F., Sigh, S. K., Feingold, D. S., and Chakrabarty, A. M., 1989, Purification and characterization of guanosine diphospho-D-mannose dehydrogenase: A key enzyme in the biosynthesis of alginate by Pseudomonas aeruginosa, J. Biol. Chem. 264: 9380–9385.PubMedGoogle Scholar
  194. Russell, N.J., and Gacesa, P., 1988, Chemical structure and physical properties of alginate, Mol. Asp. Med. 10: 21–31.Google Scholar
  195. Russell, N. J., and Gacesa, P., 1989, Physicochemical properties of alginate from mucoid strains of P. aeruginosa isolated from CF patients, Antibiot. Chemother. 42: 62–66.PubMedGoogle Scholar
  196. Sadoff, J. C, 1974, Cell-wall structures of Pseudomonas aeruginosa with immunological significance: A brief review, J. Infect. Dis. Suppl. 130: S61–S64.PubMedGoogle Scholar
  197. Sadoff, J. C, Wright, D. C, Futrovsky, S., Sidberry, H., Collins, H., and Kaufmann, B., 1985, Characterization of mouse monoclonal antibodies against Pseudomonas aeruginosa, Antibiot. Chemother. 36: 134–146.PubMedGoogle Scholar
  198. Sawada, S., Suzuki, M., Kawamura, T., Fujinaga, S., Masuho, Y., and Tomibe, K., 1984, Protection against infection with Pseudomonas aeruginosa by passive transfer of monoclonal antibodies to lipopolysaccharides and outer membrane proteins, J. Infect. Dis. 150: 570–576.PubMedGoogle Scholar
  199. Sawada, S., Kawamura, T., Masuho, Y., and Tomibe, K., 1985a, A new common polysaccharide antigen of strains of Pseudomonas aeruginosa detected with a monoclonal antibody, J. Infect. Dis. 151: 1290–1299.Google Scholar
  200. Sawada, S., Kawamura, T., Masuho, Y, and Tomibe, K., 1985b, Characterization of a human monoclonal antibody to lipopolysaccharides of Pseudomonas aeruginosa serotype 5: A possible candidate as an immunotherapeutic agent for infections with P. aeruginosa, J. Infect. Dis. 152: 965–970.PubMedGoogle Scholar
  201. Sawada, S., Kawamura, T, and Masuho, Y, 1987, Immunoprotective human monoclonal antibodies against five major serotypes of Pseudomonas aeruginosa, J. Gen. Microbiol. 133: 3581–3590.PubMedGoogle Scholar
  202. Schiotz, P. O., 1982, Systemic and mucosal immunity and non-specific defense mechanisms in cystic fibrosis patients, Acta Paediat. Scand. Suppl. 301: 55–62.Google Scholar
  203. Schoeffel, E., and Link, K. P., 1933, Isolation of α-and β-D-mannuronic acid, J. Biol. Chem. 100: 397–405.Google Scholar
  204. Schurr, M. J., Martin, D. W., Mudd, M. H., and Deretic, V., 1994, Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: Functional analysis in a heterologous host and role in the instability of mucoidy, J. Bacteriol. 176: 3375–3382.PubMedGoogle Scholar
  205. Schwarzmann, S., and Boring III, J. R., 1971, Antiphagocytic effect of slime from a mucoid strain of Pseudomonas aeruginosa, Infect. Immun. 3: 762–767.PubMedGoogle Scholar
  206. Sensakovic, J. W., and Bartell, P. F., 1977, Glycolipoprotein from Pseudomonas aeruginosa as a protective antigen against P. aeruginosa infection in mice, Infect. Immun. 18: 304–309.PubMedGoogle Scholar
  207. Shashkov, A. S., Zdorovenko, G. M., Daeva, E. D., Yakovleva, L. P., Solyanik, L. P., Gvozdyak, R. I., Knirel, Y. A., and Kochetkov, N. K., 1990, Antigenic polysaccharide of bacteria. 37. Structure of the polysaccharide chain of the lipopolysaccharide chain of the lipopolysaccharide of Pseudomonas syringae pv tabaci (serotroup VII), Bioorg. Khim. 16: 90–97.PubMedGoogle Scholar
  208. Shashkov, A. S., Vinogradov, E. V., Daeva, E. D., Knirel, Y. A., Zdorovenko, G. M., Gubanova, N. Y, Yakovleva, L. M., and Zakhrova, I. Y, 1991, Somatic antigens of pseudomonads: Structure of O-specific polysaccharide chain of Psevdomonas syringae pv lachrymans 7591 (serogroup IX) lipopolysaccharide, Carbohydr. Res. 212: 301–305.PubMedGoogle Scholar
  209. Sherbrock-Cox, V., Russell, N. J., and Gacesa, P., 1984, The purification and chemical characterization of the alginates present in extracellular material produced by mucoid strains of Pseudomonas aeruginosa, Carbohyd. Res. 135: 147–154.Google Scholar
  210. Simpson, J. A., Smith, S. E., and Dean, R. T., 1993, Alginate may accumulate in cystic fibrosis lung because the enzymatic and free radical capacities of phagocytic cells are inadequate for its degradation, Biochem. Mol. Biol. Int. 30: 1021–1034.PubMedGoogle Scholar
  211. Skjak-Braek, G., Grasdalen, H., and Larsen, B., 1986, Monomer sequence and acetylation pattern in some bacterial alginates, Carbohydr. Res. 154: 239–250.PubMedGoogle Scholar
  212. Skjak-Braek, G., Zanetti, F., and Paoletti, S., 1989, Effect of acetylation on some solution and gelling properties of alginates, Carbohyd. Res. 185: 131–138.Google Scholar
  213. Smedley, Y M., James, S. L., Hodges, N. A., and Marriott, C., 1986, The effect of calcium on mucus/alginate mixtures, in: Abstracts of the 14th Annual Meeting of the European Workshop Group for Cystic Fibrosis, p. 36.Google Scholar
  214. Smidsrød, O., 1974, Molecular basis for some physical properties of alginates in the gel state, Frad. Disc. Chem. Soc. 57: 263–274.Google Scholar
  215. Smith, A. R. W., Zamze, S. E., Munro, S. M., Carter, K. J., and Hignett, R. C., 1985, Structure of the side chain of lipopolysaccharide from Pseudomonas syringae pv morsprunorum C28, Eur. J. Biochem. 149: 73–78.PubMedGoogle Scholar
  216. Stanford, E. C. C., 1883, On algin: A new substance obtained from some of the commoner species of marine algae, Chem. News 47: 254–257.Google Scholar
  217. Stiver, H. G., Zachidniak, W., and Speert, D. P., 1988, Inhibition of polymorphonuclear leukocyte chemotaxis by the mucoid exopolysaccharide of Pseudomonas aeruginosa, Clin. Invest. med. 11: 247–252.PubMedGoogle Scholar
  218. Stockton, B. L., Evans, V., Morris, E. R., and Rees, D. A., 1980, Circular dichroism analysis of the block structure of alginates from Alaria esculenta, Int. J. Biol. Macromol. 2: 176–178.Google Scholar
  219. Tatnell, P. J., Russell, N. J., and Gacesa, P., 1994, GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: Evidence from metabolite studies, Microbiology 140: 1745–1754.PubMedGoogle Scholar
  220. Terashima, M., Uezumi, I., Tomio, T., Kato, M., Irie, K., Okuda, T., Yokota, S-L, and Noguchi, H., 1991, A protective human monoclonal antibody directed to the outer core region of Pseudomonas aeruginosa lipopolysaccharide, Infect. Immun. 59: 1–6.PubMedGoogle Scholar
  221. Thomassen, M. J., Demko, C. A., and Doershuk, C. F., 1987, Cystic fibrosis: A review of pulmonary infections and interventions, Pediatr. Pulmonol. 3: 334–351.PubMedGoogle Scholar
  222. Vinogradov, E. V, Daeva, E. D., Shashkov, A. S., Knirel, Y. A., Zdorovenko, G. M., Yakovleva, L. M., Gubanova, N. Y, and Solyanik, L. P., 1991a, Somatic antigens of pseudomonads: Structure of the O-specific polysaccharide chain of Pseudomonas gladiola pv allucola 8494 (serogroup X) lipopolysaccharide, Carbohydr. Res. 212: 313–320.PubMedGoogle Scholar
  223. Vinogradov, E. V., Shashkov, A. S., Knirel, Y. A., Zdorovenko, G. M., Solyanik, L. P., Gubanova, N. Y., and Yakovleva, L. M., 1991b, Somatic antigens of pseudomonads: Structure of the O-specific polysaccharide chain of Pseudomonas syringae pv tabaci 225 (serotroup VIII) lipopolysaccharide, Carbohydr. Res. 212: 307–311.PubMedGoogle Scholar
  224. Vinogradov, E. V., Shashkov, A. S., Knirel, Y. A., Zdorovenko, G. M., Solyanik, L. P., and Gvozdyak, R. I., 1991c, Somatic antigens of pseudomonads: Structure of the O-specific polysaccharide chain of Pseudomonas syringae pv syringae (cerasi) 435 lipopolysaccharide, Carbohydr. Res. 212: 295–299.PubMedGoogle Scholar
  225. Walker, S. G., and Beveridge, T. J., 1988, Amikacin disrupts the cell envelope of Pseudomonas aeruginosa ATCC 9027, Can. J. Microbiol. 34: 12–18.PubMedGoogle Scholar
  226. Warren, G. H., and Gray, J., 1954, The depolymerization of bacterial polysaccharides by hyaluronidase preparations, J. Bacteriol. 67: 167–170.PubMedGoogle Scholar
  227. Warren, G. H., and Gray, J., 1955, Studies on the properties of a polysaccharide constituent produced by Pseudomonas aeruginosa, J. Bacteriol. 70: 152–1PubMedGoogle Scholar
  228. Wilkinson, S. G., 1983, Composition and structure of lipopolysaccharides from Pseudomonas aeruginosa, Rev. Infect. Dis. 5: S941–S949.PubMedGoogle Scholar
  229. Wilkinson, S. G., and Galbraith, L., 1975, Studies of lipopolysaccharides from Pseudomonas aeruginosa, Eur. J. Biochem. 52: 331–343.PubMedGoogle Scholar
  230. Wozniak, D. J., 1994, Integration host factor and sequences downstream of the Pseudomonas aeruginosa algD transcription start site are required for expression, J. Bacteriol. 176: 5068–5076.PubMedGoogle Scholar
  231. Wozniak, D. J., and Ohman, D. E., 1991, Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription, J. Bacteriol. 173: 1406–1413.PubMedGoogle Scholar
  232. Wozniak, D. J., and Ohman, D. E., 1993, Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene, J. Bacteriol. 175: 4145–4153.PubMedGoogle Scholar
  233. Wozniak, D. J., and Ohman, D. E., 1994, Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD which reveals a hierarchy of alginate gene expression which is modulated by algT, J. Bacteriol. 176: 6007–6014.PubMedGoogle Scholar
  234. Yokota, S-L, Kaya, S., Sawada, S., Kawamura, T., Araki, Y., and Ito, E., 1987, Characterization of a polysaccharide component of lipopolysaccharide from Pseudomonas aeruginosa IID 1008 (ATCC 27584) as D-rhamnan, Eur. J. Biochem. 167: 203–209.PubMedGoogle Scholar
  235. Yokota, S., Ochi, H., Ohtsuka, H., Kato, M., and Noguchi, H., 1989, Heterogeneity of the L-rhamnose residue in the outer core of Pseudomonas aeruginosa lipopolysaccharide, characterized by using human monoclonal antibodies, Infect. Immun. 57: 1691–1696.PubMedGoogle Scholar
  236. Yokota, S., Terashima, M., Chiba, J., and Noguchi, H., 1992, Variable cross-reactivity of Pseudomonas aeruginosa lipopolysaccharide-core-specific monoclonal antibodies and its possible relationship with serotype, J. Gen. Microbiol. 138: 289–296.PubMedGoogle Scholar
  237. Young, J. M., Dye, D. W, Bradbury, J. F., Panagopoulos, C. G., and Robbs, C. F., 1978, A proposed nomenclature and classification for plant pathogenic bacteria, N.Z. J. Agric. Res. 21: 153–177.Google Scholar
  238. Yu, H., Schurr, M. J., and Deretic, V., 1995, Functional equivalence of Echerichia coli σE and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa, J. Bacteriol. 177: 3259–3268.PubMedGoogle Scholar
  239. Zielinski, N. A., Chakrabarty, A. M., and Berry, A., 1991, Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase, J. Biol. Chem. 266: 9754–9763.PubMedGoogle Scholar
  240. Zielinski, N. A., Maharaj, R., Roychoudhury, S., Danganan, C. E., Hendrickson, W., and Chakrabarty, A. M., 1992, Alginate synthesis in Pseudomonas aeruginosa: Environmental regulation of the alg C promoter, J. Bacteriol. 174: 7680–7688.PubMedGoogle Scholar
  241. Zierdt, C. H., and Williams, R. L., 1975, Serotyping of Pseudomonas aeruginosa isolates from patients with cystic fibrosis of the pancreas, J. Clin. Microbiol. 1: 521–526.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Estelle J. McGroarty
    • 1
  1. 1.Department of BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations