Advertisement

Pseudomonas pp 35-72 | Cite as

Carbohydrate Catabolism in Pseudomonas aeruginosa

  • Louise M. Temple
  • Andrew E. Sage
  • Herbert P. Schweizer
  • Paul V. PhibbsJr.
Part of the Biotechnology Handbooks book series (BTHA, volume 10)

Abstract

The goal of this review is to update the reader on recent data elucidating the physiology and genetics of glycolytic pathways in P. aeruginosa, the most thoroughly investigated member of the pseudomonads. Glycolytic pathways in this organism have several unique features. Lacking phosphofructokinase, P. aeruginosa metabolizes three- and six-carbon sugars via a central cycle which includes the Entner-Doudoroff pathway (EDP) enzymes, rather than utilizing the fermentation pathway of Embden-Meyerhoff-Parnas (EMP) (Entner and Doudoroff, 1952; Kersters and DeLey, 1968). Another unique physiological feature is that a product of the EDP, glyceraldehyde 3-phosphate, is largely recycled through the central cycle, rather than continuing to pyuvate via the lower EMP pathway (Banerjee, 1989; Phibbs, 1988). Thus, the latter enzymes in P. aeruginosa seem to serve gluconeogenic rather than the more usual catabolic functions in other organisms. Whereas the metabolism of glucose is preferred by Escherichia coli, P. aeruginosa utilizes succinate and other tricarboxylic acid cycle intermediates before glucose (Anderson and Wood, 1969; Belvins et al., 1975; Hylemon and Phibbs, 1972; Midgley and Dawes, 1973; and Tiwari and Campbell, 1969). In addition, this organism lacks an oxidative hexose monophosphate pathway (Phibbs, 1988).

Keywords

Pseudomonas Aeruginosa Pyruvate Carboxylase Chromosomal Fragment Glycerol Kinase Glycerol Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, S. L., and Phillips, A. T., 1990, Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida, J. Bacteriol. 172:5470–5476.PubMedGoogle Scholar
  2. Anderson, R. L., and Wood, W. R., 1969, Carbohydrate metabolism in microorganisms, Ann. Rev. Microbiol. 23:539–578.Google Scholar
  3. Austin, D., and Larson, T. J., 1991, Nucleotide sequence of the glpD gene encoding aerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. J. Bacteriol. 173:101–107.PubMedGoogle Scholar
  4. Banerjee, P. C, 1989, Fructose-bisphosphatase-deficient mutants of mucoid Pseudomonas aeruginosa, Folia Microbiologica 34:81–86.PubMedGoogle Scholar
  5. Banerjee, P. C, Vanags, R. I., Chakrabarty, A. M., and Maitra, P. K., 1983, Alginic acid synthesis in Pseudomonas aeruginosa mutants defective in carbohydrate metabolism, J. Bacteriol. 155:238–245.PubMedGoogle Scholar
  6. Banerjee, P. C, Vanags, R. I., Chakrabarty, A. M., and Maitra, P. K., 1985, Fructose, 1,6-bisphosphate aldolase activity is essential for synthesis of alginate from glucose by Pseudomonas aeruginosa, J. Bacteriol. 161:458–460.PubMedGoogle Scholar
  7. Banerjee, P. C., Darzins, A., and Maitra, P. K., 1987, Gluconeogenic mutations in Pseudomonas aeruginosa genetic linkage between fructose-bisphosphate aldolase and phosphoglycerate kinase, J. Gen. Microbiol. 133:1099–1108.PubMedGoogle Scholar
  8. Baumann, P., and Baumann, L., 1975, Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis. Arch. Microbiol. 105(3):225–240.PubMedGoogle Scholar
  9. Blevins, W. T., Feary, T. W., and Phibbs, P. V., Jr., 1975, 6-Phosphogluconate dehydratase deficiency in pleiotropic carbohydrate negative mutant strains of Pseudomonas aeruginosa, J. Bacteriol. 121:942–949.PubMedGoogle Scholar
  10. Calligeros, J. E., Matsumoto, H., Gates, J. E., and Phibbs, P. V., Jr., 1996, Characterization and genetic mapping of phosphoglucoisomerase mutations in Pseudomonas aeruginosa, Curr Microbiol. 33:347–351.PubMedGoogle Scholar
  11. Colby, J., Dalton, H., and Whittenbury, R. 1979, Biological and biochemical aspects of microbial growth on 1 carbon compounds, Ann. Rev. Microbiol. 33:481–518.Google Scholar
  12. Collier, D. N., Hager, P. W., and Phibbs, P. V., Jr., 1996, Catabolite repression control in the Pseudomonads, Res. Microbiol. 147:551–561.PubMedGoogle Scholar
  13. Cuskey, S. M., and Phibbs, P. V., Jr., 1985, Chromosomal mapping of mutations affecting glycerol and glucose catabolism in Pseudomonas aeruginosa PAO, J. Bacteriol. 162:872–880.PubMedGoogle Scholar
  14. Cuskey, S. M., Wolff, J. A., Phibbs, P. V., Jr., and Olsen, R. H., 1985, Cloning of Genes specifying carbohydrate catabolism in Pseudomonas aeruginosa and Pseudomonas putida, J. Bacteriol. 162:865–871.PubMedGoogle Scholar
  15. Darzins, A., and Casabadan, M. J., 1989, In vivo cloning of Pseudomonas aeruginosa genes with mini-D3112 transposable bacteriophage, J. Bacteriol. 171:3917–3925.PubMedGoogle Scholar
  16. Delic-Attree, I., Toussaint, B., and Vignais, P. M., 1995, Cloning and sequence analysis of the genes coding from the integration host factor (IHF) and HU proteins of Pseudomonas aeruginosa, Gene 154:61–64.PubMedGoogle Scholar
  17. Duline, J. A., and Frank Jzn, J., 1981, Quino proteins, a novel class of dehydrogenases, Trends Biochem. Sci. 6:278–280.Google Scholar
  18. Duine, J. A., and Jongejan, J. A., 1989, Quinoproteins, enzymes with pyrrolo-quinoline quinone as cofactor. Annu. Rev. Biochem. 58:403–426.PubMedGoogle Scholar
  19. Durham, D. R., and Phibbs, P. V., Jr., 1982, Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa, J. Bacteriol. 149:534–541.PubMedGoogle Scholar
  20. Eagon, R. G., 1971, 2-Deoxyglucose transportation via passive diffusion and its oxidation, not phosphorylation, to 2-deoxygluconic acid by Pseudomonas aeruginosa, Can. J. Biochem. 49:606–613.PubMedGoogle Scholar
  21. Eisenberg, R. C, and Phibbs, P. V., Jr., 1982, Characterization of an inducible mannitolbinding protein from Pseudomonas aeruginosa, Curr. Microbiol. 7:229–234.Google Scholar
  22. Entner, N., and Doudoroff, M., 1952, Glucose and gluconic acid oxidation of Pseudomonas saccharophila, J. Biol. Chem. 196:853–862.PubMedGoogle Scholar
  23. Fraenkel, D. G., 1986, Mutants in glycolysis, An. Rev. Biochem. 55:317–337.Google Scholar
  24. Goosen, N., and van de Putte, P., 1995, The regulation of transcription initiation by integration host factor, Mol. Microbiol. 16:1–7.PubMedGoogle Scholar
  25. Goosen, N., Vermasas, D. A. M., and van de Putte, P., 1987, Cloning of the genes involved in synthesis of coenzyme pyrrolo-quinoline-quinone from Acenetobacter calcoaceticus, J. Bacteriol. 169:303–307.PubMedGoogle Scholar
  26. Gottschalk, G., Bender, R., Heath, H. E., and Gaudy, E. T, 1978, Relationship between catabolism of glycerol and metabolism of hexosephosphate derivatives by Pseudomonas aeruginosa, J. Bacteriol. 136:638–646.Google Scholar
  27. Govan, J. R. W., 1988, Alginate biosynthesis and other unusual characteristics associated with the pathogenesis of Pseudomonas aeruginosa in cystic fibrosis, in: Bacterial Infections of Respiratory and Gastrointestinal Mucosae, (E. Griffiths, W. Donachie, and J. Stephen, eds.), IRL Press, Oxford, pp. 67–96.Google Scholar
  28. Hager, P. W., Covert-Rinaldi, A., Wallace, W. H., and Phibbs, P. V., Jr., 1997, Cloning and sequence analysis of the gluconate operon of Pseudomonas aeruginosa PAO, Abstracts of the VI International Congress of Pseudomonas: Molecular Biology and Biotechnology, pg. 71.Google Scholar
  29. Hancock, R. E., and Carey, A. M., 1980, Protein D1, a glucose-inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa, FEMS Microbiol. Lett. 8:105–109.Google Scholar
  30. Hochster, R. M., and Katzneleon, H., 1958, On the mechanism of glucose-6-phosphate oxidation in cell-free extracts of Xanthomonas phaseoli (XP8), Can. J. Biochem. Physiol. 36:669–689.PubMedGoogle Scholar
  31. Holloway, B. W., and Morgan, A. F., 1986, Genome organization in Pseudomonas, Annu. Rev. Microbiol. 40:79–105.PubMedGoogle Scholar
  32. Holloway, B. W., Krishnapillai, V., and Morgan, A. F., 1979, Chromosomal genetics of Pseudomonas, Microbiol. Rev. 43:73–102.PubMedGoogle Scholar
  33. Holloway, B. H., Römling, U., and Tümmler, B., 1994, Genomic mapping of Pseudomonas aeruginosa PAO, Microbiol. 140:2907–2929.Google Scholar
  34. Hu, L., Allison, S. L., and Phillips, A. T, 1989, Identification of multiple repressor recognition sites in the hut system of Pseudomonas putida, J. Bacteriol. 171:4189–4195.PubMedGoogle Scholar
  35. Huang, H., and Hancock, R. E. W., 1993, Genetic definition of the substrate selectivity of outer membrane porin protein OprD of Pseudomonas aeruginosa, J. Bacteriol. 175:7793–7800.PubMedGoogle Scholar
  36. Huang, H., Siehnel, R. J., Bellido, F., Rawling, E., and Hancock, R. E., 1992, Analysis of two gene regions involved in the expression of the imipenem-specific, outer membrane porin protein OprD of Pseudomonas aeruginosa, FEMS Microbiol. Lett. 76:267–273.PubMedGoogle Scholar
  37. Hurley, J. H., Faber, H. R., Worthylake, D., Meadow, N. D., Roseman, S., Pettigrew, D. W., and Remington, S. J., 1993, Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase, Science 259:673–677.PubMedGoogle Scholar
  38. Hunt, J. C, and Phibbs, P. V., Jr., 1981, Failure of Pseudomonas aeruginosa to form membrane-associated glucose dehydrogenase activity during anaerobic growth with nitrate, Biochem. Biophys. Res. Commun. 102:1393–1399.PubMedGoogle Scholar
  39. Hunt, J. C, and Phibbs, P. V., Jr., 1983, Regulation of alternate peripheral pathways of glucose catabolism during aerobic and anaerobic growth of Pseudomonas aeruginosa, J. Bacteriol. 154:793–804.PubMedGoogle Scholar
  40. Hylemon, P. B., and Phibbs, P. V., Jr., 1972, Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa, Biochem. Biophys. Res. Commun. 48:1041–1048.PubMedGoogle Scholar
  41. Karpel, R. L., and Burchard, A. C, 1981, A basic isozyme of yeast Saccharomyces cerevisiae glyceraldehyde, 3-phosphate dehydrogenase with nucleic acid helix destabilizing activity, Biochim. Biophys. Acta. 64:256–267.Google Scholar
  42. Kersters, K., and DeLey, J., 1968, The occurrence of the Entner—Doudoroff pathway in bacteria, Antonie van Leewenhoek 34:393–408.Google Scholar
  43. Leidigh, B. J., and Wheelis, M. L., 1973, The clustering on the Pseudomonas putida chromosome of genes specifying dissimilatory functions. J. Mol. Evol. 2(4):235–242.PubMedGoogle Scholar
  44. Lessie, T. G., and Phibbs, P. V., Jr., 1984, Alternative pathways of carbohydrate utilization in pseudomonads, Ann. Rev. Microbiol. 38:359–387.Google Scholar
  45. Liao, X., Charlebois, I., Ouellet, C., Morency, M.-J., Dewar, K., Lightfoot, J., Foster, J., Siehnel, R., Schweizer, H. P., Lam, J., Hancock, R. E. W., and Levesque, R. C, 1996, Physical mapping of 32 genetic markers on the Pseudomonas aeruginosa PAO1 chromosome, Microbiology 142:79–86.PubMedGoogle Scholar
  46. Ma, J. F., Hager, P. W., Howell, M. L., Phebbs, P. V., and Hassett, D. J., 1998, Cloning and characterization of the Pseudomonas aeruginosa zwf gene encoding glucose-6-phosphate dehydrogenase, an enzyme important in resistance to methyl viologen (paraquat). J. Bacteriol. 180(7): 1741–1749.PubMedGoogle Scholar
  47. MacAlister, L., and Holland, M. J., 1985, Differential expression of the three yeast glyceraldehyde, 3-phosphate dehydrogenase genes, J. Biol. Chem. 280:15013–15018.Google Scholar
  48. MacGregor, C. H., Wolff, J. A., Arora, S. K., and Phibbs, P. V., Jr., 1991, Cloning a catabolite repression control CRC gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa. Bacteriol. 173:7204–7212.Google Scholar
  49. MacGregor, C. H., Arora, S. K., Hager, P. W., Dail, M. B., and Phibbs, P. V., Jr., 1996, The nucleotide sequence of the Pseudomonas aeruginosa pyrE-crc-rph region and the purification of the ere gene product, J. Bacteriol. 178:5627–5635.PubMedGoogle Scholar
  50. Martin, D. W., Holloway, B. W., and Deretic, V., 1993, Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor, J. Bacteriol. 175:1153–1164.PubMedGoogle Scholar
  51. Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., 1979, Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Purification and structure of cytochrome-binding form, J. Biochem. 85:1173–1181.PubMedGoogle Scholar
  52. Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., 1979, D-gluconate dehydrogenase from bacteria, 2-keto-D-gluconate yielding, membrane bound, Methods Enzymol. 89:187–193.Google Scholar
  53. Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., 1979, Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Its kinetic properties and a reconstitution of gluconate oxidase, J. Biochem. 86:249–256.PubMedGoogle Scholar
  54. Matsushita, K., Yamada, M., Shinagawa, E., Adachi, O., and Ameyama, M., 1980, Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically. J. Bacteriol. 141(1):389–392.PubMedGoogle Scholar
  55. May, T. B., Shinabarger, D., Maharaj, R., Kato, J., Chu, L., Devault, J. D., Roychoudthury, S., Zielinkski, N. A., Berry, A., Rothmel, R. K., Misra, T. K., and Chakrabarty, A. M., 1991, Alginate synthesis by Pseudomonas aeruginosa: A key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients, Clin. Microbiol. Rev. 4:191–206.PubMedGoogle Scholar
  56. McCowen, S. M., Phibbs, P. V., Jr., and Feary, T. W., 1981, Glycerol catabolism in wild-type and mutant strains of Pseudomonas aeruginosa, Curr. Microbiol. 5:191–196.Google Scholar
  57. McCowen, S. M., Sellers, J. R., and P. V., Phibbs, Jr., 1987, Characterization of fructose, 1,6-diphosphate-insensitive catabolic glycerol kinase of Pseudomonas aeruginosa, Curr. Microbiol. 14:323–327.Google Scholar
  58. Midgley, M., and Dawes, E. A., 1973, The regulation of transport of glucose and methyl alpha glucoside in Pseudomonas aeruginosa, Biochem. J. 132:141–154.PubMedGoogle Scholar
  59. Ng, F. M. W., and Dawes, E. A., 1973, Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate, Biochem. J. 132:129–140.PubMedGoogle Scholar
  60. Nikaido, H., and Saier, M. H., 1992, Transport proteins in bacteria: Common themes in their design, Science 258:936–942.PubMedGoogle Scholar
  61. O’Brien, R. W., 1975, Enzymatic analysis of the pathways of glucose catabolism and gluconeogenesis in Pseudomonas citronellosis, Arch. Microbiol. 103:71–76.PubMedGoogle Scholar
  62. Olsen, R. H., Debusscher, G., and McCombie, W. R., 1982, Development of broad hostrange vectors and gene banks: Self-cloning of the Pseudomonas aeruginosa chromosome, J. Bacteriol. 150:60–69.PubMedGoogle Scholar
  63. Parkinson, J. S., 1993, Signal transduction schemes of bacteria, Cell 73:857–871.PubMedGoogle Scholar
  64. Parkinson, J. S., and Kofold, E. C, 1992, Communication modules in bacterial signaling proteins, Ann. Rev. Genet. 26:71–112.PubMedGoogle Scholar
  65. Perucho, M., Salas, J., and Salas, M. L., 1977, Identification of the mammalian DNA binding protein P-8 as glyceraldehyde 3-phosphate dehydrogenase, Eur. J. Biochem. 81:557–562.PubMedGoogle Scholar
  66. Phibbs, P. V., Jr., 1988, Genetic analysis of carbohydrate metabolism in Pseudomonas, in: Microbial Metabolism and the Carbon Cycle, (S. R. Hagedorn, R. S. Hanson, and D. A. Kunz, eds.), Harwood Academic Publishers, New York, pp. 412–436.Google Scholar
  67. Phibbs, P. V., Jr., and Eagon, R. G., 1970, Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa. Arch. Biochem. Biophys. 138(2): 470–482.PubMedGoogle Scholar
  68. Phibbs, P. V., Jr., Feary, T. W., and Blevins, W. T., 1974, Pyruvate carboxylase deficiency in pleiotropic carbohydrate negative mutant strains of Pseudomonas aeruginosa, J. Bacteriol. 118:999–1009.PubMedGoogle Scholar
  69. Phibbs, P. V., Jr., McCowen, S. M., Feary, T. W., and Blevins, W. T., 1978, Mannitol and fructose catabolic pathways of Pseudomonas aeruginosa carbohydrate negative mutants and pleiotropic effects of certain enzyme deficiencies, J. Bacteriol. 133:717–728.PubMedGoogle Scholar
  70. Phibbs, P. V., Jr., Srivastava, R., Chunfang, Z., and Holloway, B. W., 1987, Expression of the P. aeruginosa mannitol utilization genes in P. putida. Abstr. Ann. Meet. Am. Soc. Microbiol. H-25, p. 143.Google Scholar
  71. Phillips, A. T., and Mulfinger, L. M., 1981, Cyclic adenosine 3′,5′-monophosphate levels in Pseudomonas putida and Pseudomonas aeruginosa, J. Bacteriol. 145:1286–1292.PubMedGoogle Scholar
  72. Proctor, W. D., Hager, P. W., and Phibbs, P. V., Jr., 1997, Purification and characterization of HexR, a putative repressor protein involved in the regulation of carbohydrate catabolism by Pseudomonas aeruginosa PAO1, Abstracts of the VI International Congress of Pseudomonas: Molecular Biology and Biotechnology, pg. 148.Google Scholar
  73. Proctor, W. D., Arora, S., Hager, P., and Phibbs, P. V., Jr., 1997, Integration host factor and the putative repressor protein hexR bind the hexC locus of Pseudomonas aeruginosa, Abstr. Annu. Meet. Am. Soc. Microbiol K-95, 357.Google Scholar
  74. Ratnaningsih, E., Dharmsthiti, S., Krishnapillai, V., Morgan, A., Sinclair, M., and Holloway, B. W., 1990, A combined physical and genetic map of Pseudomonas aeruginosa PAO, J. Gen. Microbiol. 136:2351–2357.PubMedGoogle Scholar
  75. Rivers, D. B., and Blevins, W. T., 1987, Multiple enzyme forms of glyceraldehyde, 3-phos-phate dehydrogenase in Pseudomonas aeruginosa, J. Gen. Microbiol. 133:3159–3164.PubMedGoogle Scholar
  76. Roehl, R. A., and Phibbs, P. V., Jr., 1981, Genetic mapping of mutations in the mannitol catabolic pathway of Pseudomonas aeruginosa, Abstr. Ann. Meet. Am. Soc. Microbiol. K70, 149.Google Scholar
  77. Roehl, R. A., and Phibbs, P. V., Jr., 1982, Characterization and genetic mapping of fructose phosphotransferase mutations in Pseudomonas aeruginosa, J. Bacteriol. 149:897–905.PubMedGoogle Scholar
  78. Roehl, R. A., Feary, T. W., and Phibbs, P. V., Jr., 1983, Clustering of mutations affecting central pathway enzymes of carbohydrate catabolism in Pseudomonas aeruginosa, J. Bacteriol. 156:1123–1129.PubMedGoogle Scholar
  79. Romling, U., Duchene, M., Essar, D. W., Galloway, D., Guidi-Rontani, C., Hill, D., Lazdunski, A., Millet, R. V., Scheifer, K. H., Smith, D. W., Toschka, H. Y., and Tümmler, B., 1992, Localization of alg, opr, phn, 4.5S RNA, 6S RNA, tox, trp, and xcp genes, rrn operons, and the chromosomal origin on the physical genome may of Pseudomonas aeruginosa PAO, J. Bacteriol. 174:327–330.PubMedGoogle Scholar
  80. Ryazanov, A. G., 1985, Glyceraldehyde 3-phosphate dehydrogenase is one of the three major RNA-binding proteins of rabbit reticulocytes, FEBS Lett. 182:131–134.Google Scholar
  81. Sage, A. E., Proctor, W. D., and Phibbs, P. V., Jr., 1996, A two-component response regulator, gltR, is required for glucose transport activity in Pseudomonas aeruginosa, J. Bacteriol. 178:6064–6066.PubMedGoogle Scholar
  82. Sage, A., Temple, L. M., Christie, G. E., and Phibbs, P. V., Jr., 1993, Nucleotide sequence and expression of the glucose catabolism and transport genes in Pseudomonas aeruginosa, Prog. Abstr. Fourth Int. Symp. Pseudomonas: Biotechnology and Molecular biology, 1993, Vancouver, British Columbia, Canada, p. 105.Google Scholar
  83. Savrolac, E. G., Taylor, N. F., Benz, R., and Hancock, R. E. W., 1991, Purification of glucose-inducible outer membrane protein OprB of Pseudomonas putida and reconstitution of glucose-specific pores, J. Bacteriol. 173:4970–4976.Google Scholar
  84. Sawyer, M. H., Baumann, P., Baumann, L., Berman, S. M., Canovas, J. L., and Berman, R. H., 1977, Pathways of D-fructose catabolism in species of Pseudomonas, Arch. Microbiol. 112(1):49–55.PubMedGoogle Scholar
  85. Schweizer, H. P., 1991, The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa, J. Bacteriol, 173:6798–6806.PubMedGoogle Scholar
  86. Schweizer, H. P., 1992, Allelic exchange in Pseudomonas aeruginosa using novel ColEl-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker, Mol Microbiol. 6:1195–1204.PubMedGoogle Scholar
  87. Schweizer, H. P., and Hoang, T, 1995, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa, Gene 158:15–22.PubMedGoogle Scholar
  88. Schweizer, H. P., and Po, C. 1994, Cloning and characterization of the sn-glycerol 3-phosphate dehydrogenase structural gene glpD of Pseudomonas aeruginosa, J. Bacteriol. 176:2184–2193.PubMedGoogle Scholar
  89. Schweizer, H. P., and Po, C., 1996, Regulation of glycerol metabolism in Pseudomonas aeruginosa: Characterization of the glpR repressor gene, J. Bacterioi. 178:5215–5221.Google Scholar
  90. Schweizer, H. P., Po, C., and Bacic, M. K., 1995, Identification of Pseudomonas aeruginosa glpM, whose gene product is required for efficient alginate biosynthesis from various carbon sources, J. Bacterioi. 177:4801–4804.Google Scholar
  91. Schweizer, H. P., Jump, R., and Po, C., 1997, Structure and gene-polypeptide relationships of the region encoding glycerol diffusion facilitator (glpF) and glycerol kinase (glpK) of Pseudomonas aeruginosa, Microbiol. 143:1287–1297.Google Scholar
  92. Siegel, L. S., and Phibbs, P. V., Jr., 1979, Glycerol and L-α-glycerol 3-phosphate uptake by Pseudomonas aeruginosa, Curr. Microbiol. 2:251–256.Google Scholar
  93. Siegel, L. S., Hylemon, P. B., and Phibbs, P. V., Jr., 1977, Cyclic adenosine 3′,5′-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase in Pseudomonas and Bacteroids, J. Bacterioi. 129:87–96.Google Scholar
  94. Singh, R., and M. R. Green, 1993, Sequence-specific binding of transfer RNA by glyceraldehyde, 3-phosphate dehydrogenase, Science 259:365–368.PubMedGoogle Scholar
  95. Sly, L. M., Worobec, E. A., Perkins, R. E., and Phibbs, P. V., Jr., 1993, Reconstitution of glucose uptake and chemotaxis in Pseudomonas aeruginosa glucose transport defective mutants, Can. J. Microbiol. 39:1079–1083.PubMedGoogle Scholar
  96. Stinnet, J. D., and Eagon, R. G., 1973, Comparison of protein content of cytoplasmic membrane and outer cell wall membrane of Pseudomonas aeruginosa, Abstr. Annu. Meet. Am. Soc. Microbiol. 73:182.Google Scholar
  97. Stinnett, J. D., Guymon, L. F., and Eagon, R. G., 1973, A novel technique for the preparation of transport-active membrane vesicles from Pseudomonas aeruginosa: Observations on gluconate transport, Biochem. Biophys. Commun. Res. 52:284–290.Google Scholar
  98. Stinson, M. W., Cohen, M. A., and Merrick, J. M., 1977, Purification and properties of the periplasmic glucose-binding protein of Pseudomonas aeruginosa, J. Bacterioi. 131:672–681.Google Scholar
  99. Temple, L., Cuskey, S. M., Perkins, R. E., Bass, R. C, Morales, N. M., Christie, G. E., Olsen, R. H., and Phibbs, P. V., Jr., 1990, Analysis of cloned structural and regulatory genes for carbohydrate utilization in Pseudomonas aeruginosa PAO, J. Bacterioi. 172:6396–6404.Google Scholar
  100. Temple, L., Sage, A. E., Christie, G. E., and Phibbs, P. V., Jr., 1994, Two genes for carbohydrate catabolism are divergently transcribed from a region of DNA containing the hexC locus in Pseudomonas aeruginosa PAO1, J. Bacterioi. 176:4700–4709.Google Scholar
  101. Terry, J. M., Pina, S. E., and Mattingly, S. J., 1991, Environmental conditions which influence mucoid conversion in Pseudomonas aeruginosa PAO1, Infect. Immun. 59:471–477.PubMedGoogle Scholar
  102. Terry, J. M., Pina, S. E., and Mattingly, S. J., 1992, Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype, Infect. Immun. 60:1329–1335.PubMedGoogle Scholar
  103. Tiwari, N. P., and Campbell, J. R. R., 1969, Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate medium, Biochim. Biophy. Acta 192:395–401.Google Scholar
  104. Trias, J., Rosenberg, E. Y., and Nikaido, H., 1988, Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa, Biochim. Biophys. Acta 938:493–496.PubMedGoogle Scholar
  105. Tsay, S.-S., Brown, K. K., and Gaudy, E. T, 1971, Transport of glycerol by Pseudomonas aeruginosa, J. Bacterioi. 108:82–88.Google Scholar
  106. Van Dijken, J. P., and Quayle, J. R., 1977, Fructose metabolism in four Pseudomonas species. Arch. Microbiol. 114(3):281–286.PubMedGoogle Scholar
  107. Voegel, R. T., Sweet, G. D., and Boos, W., 1993, Glycerol kinase of Escherichia coli is activated by interaction with the glycerol facilitator, J. Bacteriol. 175:1087–1094.Google Scholar
  108. Wallace, W. H., 1989, Genetic and biochemical analysis of gluconate utilization in Pseudomonas aeruginosa PAO1, Ph.D. Thesis, Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC.Google Scholar
  109. Wallace, W. H., and Phibbs, P. V., Jr., 1988. Chromosomal mapping of mutations affecting the oxidative pathway of glucose catabolism in Pseudomonas aeruginosa PAO, Abstr. Ann. Meet. Am. Soc. Microbiol. K-115, 225.Google Scholar
  110. Weissenborn, D. L., and Larson, T. J., 1992, Structure and regulation of the glpFK operon encoding glycerol diffusion facilitator and glycerol kinase of Escherichia coli K-12, J. Biol. Chem. 267:6122–6131.PubMedGoogle Scholar
  111. Whiting, P. H., Midgley, M., Dawes, E. A., 1976a, The role of glucose limitation in the regulation of the transport of glucose, gluconate, and 2-oxo-gluconate and of glucose metabolism in Pseudomonas aeruginosa, J. Gen. Microbiol. 92:304–310.PubMedGoogle Scholar
  112. Whiting, P. H., Midgley, M., Dawes, E. A., 1976b, The regulation of transport of glucose, gluconate, and 2-oxo-gluconate and of glucose metabolism in Pseudomonas aeruginosa, Biochem. J. 154:659–668.PubMedGoogle Scholar
  113. Williams, S. G., Greenwood, J. A., and Jones, C. W, 1994, The effect of nutrient limitation on glycerol uptake and metabolism in continuous cultures of Pseudomonas aeruginosa, Microbiol. 140:2961–2969.Google Scholar
  114. Wolff, J. A., and Phibbs, P. V., Jr., 1986, Construction and use of a small cosmid cloning vector that replicates in Pseudomonas aeruginosa, Plasmid 16:228.Google Scholar
  115. Wolff, J. A., MacGregor, C. H., Eisenberg, R. C, and Phibbs, P. V., Jr., 1991, Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO, J. Bacteriol. 173:4700–4706.PubMedGoogle Scholar
  116. Wozniak, D. J., and Ohman, D. E., 1993, Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene, J. Bacteriol. 75:4145–4153.Google Scholar
  117. Wylie, J. L., and Worobec, E. A., 1993, Substrate specificity of the high-affinity glucose transport system of Pseudomonas aeruginosa, Can. J. Microb. 39:722–725.Google Scholar
  118. Wylie, J. L., and Worobec, E. A., 1994, Cloning and nucleotide sequence of the Pseudomonas aeruginosa glucose-selective OprB porin gene and distribution of OprB within the family Pseudomonadaceae, Eur.J. Biochem. 22:505–512.Google Scholar
  119. Wylie, J. L., and Worobec, E. A., 1995, The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa, J. Bacteriol. 17:3021–3026.Google Scholar
  120. Wylie, J. L., Bernegger-Egli, C., O’Neil, J. D. J., and Worobec, E. A., 1993. Biophysical characterization of OprB, a glucose-inducible protein of Pseudomonas aeruginosa, J. Bioenerg. Biomembr. 25:547–556.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Louise M. Temple
    • 1
  • Andrew E. Sage
    • 2
  • Herbert P. Schweizer
    • 3
  • Paul V. PhibbsJr.
    • 4
  1. 1.Department of BiologyDrew UniversityMadisonUSA
  2. 2.Worldwide Microbiology GroupMillipore Corp.BedfordUSA
  3. 3.Department of MicrobiologyColorado State University College of Veterinary MedicineFort CollinsUSA
  4. 4.Department of Microbiology and ImmunologyEast Carolina University School of MedicineGreenvilleUSA

Personalised recommendations