Taurine 3 pp 329-337 | Cite as

Interrelationship between Taurine and GABA

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 442)


β-Aminoethanesulfonic acid (taurine) and γ-aminobutyric acid (GABA) are recognized as major inhibitory neuroactive amino acids distributed in large quantities in various central nervous system (CNS) areas. The role of GABA as an inhibitory neurotransmitter has been well established, whereas that of taurine is still unclear. In the case of GABA, the structure and function of two types of the GABA receptor, GABAA and GABAB receptors, have been identified, while the taurine receptor is not yet fully understood. However, some very convincing evidence concerning the functional interrelationships between taurine and GABA in the brain has accumulated.


MDCK Cell Gaba Transporter Taurine Transporter Inhibitory Amino Acid Taurine Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andiné, P., Orwar, O., Jacobson, I., Sandberg, M., and Hagberg, H., 1991, Extracellular acidic sulfur-containing amino acids and γ-glutamyl peptides in global ischemia: postischemic recovery of neuronal activity is paralleled by a tetrodotoxin-sensitive increase in cysteinesulfinate in the CA1 of the rat hippocampus, J.Neurochem., 57:230–236.PubMedCrossRefGoogle Scholar
  2. 2.
    Arias P., Feleder, C., Rodriguez, M, Ginzburg, M., Refojo, B., Szwarcfarb, B., and Moguilevsky, J.A., 1995, Repeated intracerebroventricular administration of taurine lowers LH levels and postpones vaginal opening in peripubertal female rats, Devel. Brain Res., 85:137–139.CrossRefGoogle Scholar
  3. 3.
    Bureau, M.H. and Olsen, R.W., 1991, Taurine acts on a subclass of GABAA receptors in mammalian brain in vitro, Eur. J. Pharmac., 207:9–16.CrossRefGoogle Scholar
  4. 4.
    Curtis, D.R. and Johnson, G.A.R., 1974, Amino acid transmitters in mammalian nervous system, Ergeh. Physiol., 69:97–188.Google Scholar
  5. 5.
    Greenlee, D.V., Van Ness, P.C., and Olsen R.W., 1978, Gamma-aminobutyric acid binding in mammalian brain: receptor-like specificity of sodium-dependent sites, J. Neurochem., 31:933–938.PubMedCrossRefGoogle Scholar
  6. 6.
    Guastelia, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel., M.C., Devidson, N., Lester, H.A., and Kanner, B.I., 1992, Cloning and expression of a rat brain GABA transporter, Science, 249:1303–1306.CrossRefGoogle Scholar
  7. 7.
    Guevara-Guzman, R., Emson, P.C., and Kendrick, K.M., 1994, Modulation of in vivo striatal release by nitric oxide and cyclic GMP, J. Neurochem., 62:807–810.PubMedCrossRefGoogle Scholar
  8. 8.
    Haas, H.L. and Hosli, L., 1973, The despression of brain stem neurons by taurine and its interaction with strychynine and bicuculline, Brain Res., 52:399–402.PubMedCrossRefGoogle Scholar
  9. 9.
    Haugstad, T.S. and Langmoen, I.A., 1996, Release of brain amino acids during hyposmolar stress and energy deprivation, J. Neurol. Anesth., 8:159–168.CrossRefGoogle Scholar
  10. 10.
    Horikoshi, T., Asanuma, A., Yanagisawa, K., Anza, K., and Goto, S., 1988, Taurine and β-alanine acts on both GABA and glycine receptors in Xenopus oocyte injected with mouse brain messenger RNA, Molec. Brain Res., 4:97–105.CrossRefGoogle Scholar
  11. 11.
    Jhiang, S.M., Fithian, L., Smanik, P., McGill, J., Tong, Q., and Mazzaferri, E.L., Cloning of the human taurine transporter and characterization of taurine uptake in the thyroid cells, FEBS Lett., 318:139-144.Google Scholar
  12. 12.
    Kalloniatis, M., Marc, R.E., and Murry, R.F., 1996, Amino acid signatures in the primate retina, J. Neurosci., 16:6807–6829.PubMedGoogle Scholar
  13. 13.
    Kamisaki, Y., Maeda, K., Ishimura, M., Omura, I., and Itoh, T., 1993, Effects of taurine on depolarization-evoked release of amino acids from rat cortical synaptosomes, Brain Res., 627:181–185.PubMedCrossRefGoogle Scholar
  14. 14.
    Kontro, P. and Oja, S.S., Properties of sodium-independent taurine binding to brain synaptic membranes, in: Taurine: Biological Actions and Clinical Perspectives (Oja, S.S., Ahtee, L., Kontro, P., and Passonen, M.K., eds.) Alan R. Liss, New York, pp. 249-259.Google Scholar
  15. 15.
    Kudo, Y., Akiyoshi, E., and Akagi, H., 1988, Identification of two taurine receptor subtypes on the primary afferent terminal of frog spinal cord, Br. J. Pharmacol., 94:1051–1056.PubMedCrossRefGoogle Scholar
  16. 16.
    Lerma, J., Herranz, A.S., Herreras, O., Munoz, D., Slis, J.M., del Rio, R.M., and Delgado, J.M.R., 1985, γ-Aminobutyric acid greatly increases the in vivo extra-cellular taurine in the rat hippocampus, J. Neurochem., 44:983–986.PubMedCrossRefGoogle Scholar
  17. 17.
    Liljequist, R., 1992, Interaction of taurine and related compounds with GABAergic neurones in the nucleus raphe dorsalis, Pharmac. Biochem. Behav., 44:107–112.CrossRefGoogle Scholar
  18. 18.
    Liu, Q-R., Lópes-Corcuera, B., Mandiyan, S., Nelson, H., and Nelson, N., Molecular characterization of four pharmacologically distinct α-aminobutyric acid transporters in mouse brain, J. Biol. Chem., 268:2106-2112.Google Scholar
  19. 19.
    Liu, Q.-R., Lópes-Corcuera, B., Nelson, H., and Mandiyan, S., 1992, Cloning and expression of cDNA encoding the transporter of taurine and β-alanine in mouse brain, Proc. Natl. Acad. Sci., 89:12145–12149.PubMedCrossRefGoogle Scholar
  20. 20.
    Lópes-Corcuera, B., Liu, Q-R., Mandiyan, S., Nelson, H., and Nelson, N., 1992, Expression of a mouse brain cDNA encoding novel γ-aminobutyric acid transporter, J. Biol. Chem., 267:17491–17493.Google Scholar
  21. 21.
    Lu, P., Imaki, H., Xu, W., and Sturman, J.A., 1993, Visualization of taurine, GABA and glutamate in developing feline cerebellum by immunohistochemistry, Int. J. Neuroscience, 11:493–505.CrossRefGoogle Scholar
  22. 22.
    Malmnein, O. and Kontro, P., 1986, Modulation of GABA-benzodiazepine receptor complex by taurine in rat brain membranes, Neurochem. Res., 11:85–94.CrossRefGoogle Scholar
  23. 23.
    Matsumoto, K., Ueda, S., Hashimoto, T., and Kuriyama, K., 1991, Ischemic injury in the rat hippocampus following transient forebrain ischemia: evaluation in vivo microdialysis, Brain Res., 543:236–242.PubMedCrossRefGoogle Scholar
  24. 24.
    Mcgreer, P.L. and Mcgreer, E.G., 1989, Amino acid neurotransmitter, in Basic Neurochemistry, Molecular, Cellular and Medical Aspects, 4th ed., Raven Press, New York.Google Scholar
  25. 25.
    Mutani, R., Monaco, F., Durelli, L., and Delsedime, M., 1975, Level of free amino acids in serum and cerebrospinal fluid after administration of taurine to epileptic and normal subjects, Epilepsia, 16:765–769.PubMedCrossRefGoogle Scholar
  26. 26.
    Nageluhus, E.A., Lehmann, A., and Ottersen, O.P., 1993, Neuronal-glial exchange of taurine during hypo-osmotic stress: A combined immunocytochemical and biochemical analysis in rat cerebellar cortex, Neurosicence., 54:615–631.CrossRefGoogle Scholar
  27. 27.
    Ohkuma, S., Katsura, M., Chen, D.-Z., and Kuriyama, K., 1996, Nitric oxide-evoked [3H]taurine release is mediated by reversal of the Na+-dependent carrier-mediated taurine transport system, in: Adv. Exp. Med. Biol. “Taurine 2; Basic and Clinical Aspects”, Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M., and Baba, A., eds., Plenum, Press, New York, pp. 417–425.Google Scholar
  28. 28.
    Ohkuma, S., Katsura, M., Chen, D.-Z., Narihara, H., and Kuriyama, K., 1996, Nitric oxide-evoked [3H]γ-aminobutyric acid release is mediated by two distinct mechanisms, Mol. Brain Res., 36:137–144.PubMedCrossRefGoogle Scholar
  29. 29.
    Okamoto, K., Kimura, H., and Sasai, I., 1983, Taurine-induced increase of Cl- conductance of cerebellar purkinje cell dendrites in vitro, Brain Res., 259:319–323.PubMedCrossRefGoogle Scholar
  30. 30.
    Pow, D.V., 1994, Taurine, amino acid transmitter, and related molecules in the retina of the Australian lungfish Neoceratodus forsten: a light-microscopic immunocyto-chemical and electron-microscopic study, Cell Tissue Res., 278:311–326.PubMedCrossRefGoogle Scholar
  31. 31.
    Quinn, M.R., 1990, Taurine allosterically modulates binding sites of the GABAA receptor, in: Taurine: Functional Neurochemistry, Physiology, and Cardiology (Pasantes-Morales, H., Martin, D.L., Shain, W., and Martin del Rio R., eds., Wiley-Liss Inc., New York, pp. 121–127.Google Scholar
  32. 32.
    Quinn, M.R. and Harris, C.L., 1995, Taurine allosterically inhibits binding of [35S]-t-butylbicy-clophosphorothinate (TBPS) to rat brain synaptic membranes, Neuro-pharmacol., 34:1607–1613.Google Scholar
  33. 33.
    Quinn, M.R. and Miller, C.L., 1992, Taurine allosterically modulates flunitrazepam binding to synaptic membranes, Neurosci. Res., 33:136–141.CrossRefGoogle Scholar
  34. 34.
    Ramamoorthy, S., Ainol, L.S., Leibach F.H., Blalkely, R.D., and Ganapathy, V., 1993, Molecular cloning, expression, chromosomal localization, and regulation of the human placental taurine transporter, Placenta, 14:A60.CrossRefGoogle Scholar
  35. 35.
    Ramamoorthy, S., Del Monte, M.A., Leibach F.H., and Ganapathy, V., 1994, Molecular identity and calmodulin-mediated regulation of the taurine transporter in a human retinal pigment epithelial cell line, Curr. Eye Res., 523-529.Google Scholar
  36. 36.
    Ramamoorthy, S., Leibach F.H., Mahesh, V.B., Han, H., Yang-Feng, T., Blalkely, R.D., and Ganapathy, V., 1994, Functional characterization and chromosomal local-ization of a cloned taurine transporter from human placenta, Biochem. J., 300:893–900.PubMedGoogle Scholar
  37. 37.
    Rego, C.R., Santos M.S., and Oliveira R., 1996, Oxidative stress, hypoxia, and ischemia-like conditions increase the release of endogenous amino acids by distinct mechanism in cultured retinal cells, J. Neurochem., 66:2506–2516.PubMedCrossRefGoogle Scholar
  38. 38.
    Serrano, M., Serrano, S.J., Guerrero, M.R., and Fernandes, A., 1994, Role of GABAA and GABAB receptors and peripheral cholinergic mechanisms in the antinociceptive action of taurine, Gen. Pharmac, 25:1123–1129.CrossRefGoogle Scholar
  39. 39.
    Serrano, J.S., Serrano, M.I., Guerrero, R., Ruiz de Valderas, R., and Polo, J., 1990, Antinociceptive effect of taurine and its inhibition by naloxone, Gen. Pharmac, 21:333–336.CrossRefGoogle Scholar
  40. 40.
    Shupliakov, O., Brodin, L., Srinivasan, M., Grillner, S., Cullheim, S., Storm-Mathisen, J., and Otterson, O.P., 1994, Extrasynaptic localization of taurine-like immunoreactivity in the lamprey spinal cord, J. Comp. Neurol., 347:301–311.PubMedCrossRefGoogle Scholar
  41. 41.
    Singewald, N., Zhou, G.-Y., and Schneider, C., 1995, Release of excitatory and inhibitory amino acids from the locus coeruleus of conscious rats by cardiovascular stimuli and various forms of acute stress, Brain Res., 704:42–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Smith, K.E., Borden, L.A., Wang, C.-H. D., Hartig, P.R., Branchek, T.A., and Weinshank, R.L., J. Pharmacol. Exp. Ther., 42:563-569.Google Scholar
  43. 43.
    Smullin, D.H., Schamber, C.D., Skilling, S.E., and Larson, A.A., 1990, A possible role for taurine in analgesia, Taurine: Functional Neurochemistry, Physiology, and Cardiology, Pasantes-Morales, H., Martin, D.L., Shain, W., and Martin del Rio, R., eds., Wiley-Liss Inc., New York, pp. 129–132.Google Scholar
  44. 44.
    Torp, R., Andine, P., Hagberg, H., Karagülle, T., Blackstad, T.W., and Otterson, O.P., 1991, Cellular and subcellular distribution of glutamate-, glutamine-and taurine-like immunoreactivity during forebrain ischemia: a semiquantitative micro-scopic study in rat hippocampus, Neuroscience, 41:433–447.PubMedCrossRefGoogle Scholar
  45. 45.
    Uchida, S., Kwon, H.M., Yamauchi, A., Preston, A.S., Marumo, F., and Handler, J.S., 1992, Molecular cloning of the cDNA for an MDCK cell Na+-and Cl--dependent taurine transporter that is regulated by hypertonicity, Proc. Natl. Acad. Sci., 89:8230–8234.PubMedCrossRefGoogle Scholar
  46. 46.
    Varga, V., Janaky, R., Marnela, K.-M., Gulyas, J., Kontro, P., and Oja, S.S., 1989, Displacement of excitatory amino acid receptor ligands by acidic oligo peptides, Neurochem. Res., 14:1223–1227.PubMedCrossRefGoogle Scholar
  47. 47.
    Williams, M., Risley, E., and Totaro, JA., 1980, Interaction of taurine and β-alanine with central nervous system neurotransmitter receptors, Life Sci., 26:557–560.PubMedCrossRefGoogle Scholar
  48. 48.
    Yamauchi, A., Uchida, S., Kwon, H.M., Preston, A.S., Robey, R.B., Garcia-Perez, A., Burg, M.B., and Handler, J.S., 1992, Cloning of a Na+-and Cl--dependent betaine transporter that is regulated by hypertonicity, J. Biol. Chem., 267:649–652.PubMedGoogle Scholar
  49. 49.
    Yokoi, I., Kabuto, H., and Mori, A., 1993, Effects of GABAmimetics on electro-corticographic spike discharges induced by guanidinoethanesulfonic acid (amido-taurine) in the ra., 1993, Neurochem. Res., 18:533–538.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  1. 1.Department of PharmacologyKyoto Prefectural University of MedicineKamikyo-ku, Kyoto 602Japan

Personalised recommendations