Advertisement

Taurine 3 pp 25-32 | Cite as

Cysteine Sulfinate Decarboxylase (CSD): Molecular Cloning, Sequence and Genomic Expression in Brain

  • Marcel Tappaz
  • Isabelle Reymond
  • Marc Bitoun
  • Alain Sergeant
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 442)

Abstract

Cysteine sulfinate decarboxylase (CSD) is thought to be the rate limiting step of taurine biosynthesis9. It may thus represent a key enzyme in the function of taurine. While a CSD activity was detected in crude brain extracts more than four decades ago, its identification, characterization and cellular localization in brain proved difficult and led to controversial reports (For review see14,15). We previously established that there exists in brain an enzyme showing a strong affinity and narrow specificity for cysteine sulfinic acid (CSA) and cysteic acid (CA)6. Brain CSD appeared to be very similar to the CSD from liver: both proteins have similar physico-chemical and enzymatic properties3,6 and share common antigenic epitopes9. Using a specific antiserum against liver CSD1 we showed that CSD immunopositive cells in hippocampus and cerebellum were astrocytes through a quantitative double immunofluorescence analysis with appropriate astroglial markers11. In rat brain, CSD expression level reveals two distinct phenotypes in astrocytes that exhibit a different distribution pattern10. Given that taurine was reported to be localized predominantly in neurons5,8, our findings suggest that the poorly understood functional role of taurine in the brain4,7 should be investigated within the framework of astrocyte-neuron interactions. In addition, our results suggest that the CSD expression level may vary greatly among astrocytes according to their location and functional state. Disclosing the regulation of the genomic expression of CSD in various experimental situations could help provide insight into the physiological role of taurine in the brain. With this long-term goal in mind, we have carried out molecular cloning of CSD12, determined its sequence and developed new appropriate tools, such as the quantification of CSD-mRNA through competitive reverse transcription coupled with polymerase chain reaction (RT-PCR). These molecular biology techniques will enable us to investigate the regulation of the genomic expression of CSD in brain, as well as in astrocytes in primary culture.

Keywords

Glutamic Acid Decarboxylase Genomic Expression Cysteic Acid Cysteine Sulfinic Acid Cysteine Sulfinate Decarboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almarghini, K., Barbagli, B., and Tappaz, M., 1994, Production and characterization of a new specific antiserum against the taurine putative biosynthetic enzyme cysteine sulfinate decarboxylase, J. Neurochem., 62:1604–1614.PubMedCrossRefGoogle Scholar
  2. 2.
    De La Rosa, J. and Stipanuk, M. H., 1985, Evidence for a rate-limiting role of cysteine sulfinate decarboxylase activity in taurine biosynthesis in vivo, Comp. Biochem. Physiol., 81B:565–571.Google Scholar
  3. 3.
    Do, K. Q. and Tappaz, M. L., 1996, Specificity of cysteine sulfinate decarboxylase (CSD) for sulfurcontaining amino acids, Neurochem. Int., 28:363–371.PubMedCrossRefGoogle Scholar
  4. 4.
    Huxtable, R. J., 1989, Taurine in the central nervous system and the mammalian actions of taurine, Prog. Neurobiol., 32:471–533.PubMedCrossRefGoogle Scholar
  5. 5.
    Madsen, S., Ottersen, O. P., and Storm-Mathisen, J., 1985, Immunocytochemical visualization of taurine: neuronal localization in the rat cerebellum, Neurosci. Lett., 60:255–260.PubMedCrossRefGoogle Scholar
  6. 6.
    Oertel, W. H., Schmechel, D. E., Weise, V. K., Ranson, D. H., Tappaz, M., Krutzsch, H. C., and Kopin, I. J., 1981, Comparison of cysteine sulphinic acid decarboxylase isoenzymes and glutamic acid decarboxylase in rat liver and brain, Neuroscience, 6:2701–2714.PubMedCrossRefGoogle Scholar
  7. 7.
    Oja, S. S. and Saransaari, P., 1996, Taurine as osmoregulator and neuromodulator in the brain, Metab. Brain Dis., 11:153–164.PubMedCrossRefGoogle Scholar
  8. 8.
    Ottersen, O. P., 1988, Quantitative assessment of taurine-like immunoreactivity in different cell types and processed in rat cerebellum: an electronmicroscopic study based on a postembedding immunogold labelling procedure, Anat. Embryol., 178:407–421.PubMedCrossRefGoogle Scholar
  9. 9.
    Remy, A., Henry, S., and Tappaz, M., 1990, Specific antiserum and monoclonal antibodies against taurine biosynthesis enzyme cysteine sulfinate decarboxylase (CSD): identity of brain and liver enzyme, J. Neurochem., 54:870–879.PubMedCrossRefGoogle Scholar
  10. 10.
    Reymond, I., Almarghini, K., and Tappaz, M., 1995, Immunocytochemical localization of cysteine sulfinate decarboxylase (CSD) in astrocytes: evidence for two distinct phenotypes, Abstr.,’ 95 International Taurine Symposium (Osaka).Google Scholar
  11. 11.
    Reymond, I., Almarghini, K., and Tappaz, M., 1996, Immunocytochemical localization of cysteine sulfinate decarboxylase in astrocytes in the cerebellum and hippocampus: a quantitative double immunofluorescence study with glial fibrillary acidic protein and S-100 protein, Neuroscience, 75:619–633.PubMedCrossRefGoogle Scholar
  12. 12.
    Reymond, I., Sergeant, A., and Tappaz, M., 1996, Molecular cloning and sequence analysis of the cDNA encoding rat liver cysteine sulfinate decarboxylase (CSD), Biochim. Biophys. Acta, 1307:152–156.PubMedCrossRefGoogle Scholar
  13. 13.
    Sancho-Tello, M., Valles, S., Montoliu, C., Renau-Piqueras, J., and Guerri, C., 1995, Development pattern of GFAP and vimentin gene expression in rat brain and radial cultures, Glia, 15:157–166.PubMedCrossRefGoogle Scholar
  14. 14.
    Tappaz, M., Almarghini, K., and Do, K. D., 1994, Cysteine sulfinate decarboxylase (CSD) in brain: identification, characterization and immunocytochemical location in astrocytes, Adv. Exp. Med. Biol., 359:257–268.PubMedGoogle Scholar
  15. 15.
    Tappaz, M., Almarghini, K., Legay, F., and Remy, A., 1992, Taurine biosynthesis enzyme cysteine sulfinate decarboxylase (CSD) from brain — The long and tricky trail to identification, Neurochem. Res., 17:849–859.PubMedCrossRefGoogle Scholar
  16. 16.
    Weinstein, C. L. and Griffith, O. W., 1987, Multiple forms of rat liver cysteine sulfinate decarboxylase, J. Biol. Chem., 262:7254–7263.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Marcel Tappaz
    • 1
  • Isabelle Reymond
    • 1
  • Marc Bitoun
    • 1
  • Alain Sergeant
    • 2
  1. 1.Faculté de Médecine LaennecINSERM U 433LyonFrance
  2. 2.Ecole Normale SupérieureINSERM U 412LyonFrance

Personalised recommendations