Taurine 3 pp 277-284 | Cite as

Functional Consequences of Calcium Uptake Modulation by Taurine In Vivo and In Vitro

  • E. Trenkner
  • A. El Idrissi
  • R. Dumas
  • A. Rabe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 442)


The development, function and maintenance of the central nervous system (CNS) tissue are regulated in a timed sequence of inductions by growth factors (GF) and neuroactive amino acids (NAA)16. Taurine in particular has been identified as a “balancing factor” in the glutamate system to modulate and stabilize calcium homeostasis or enantiostasis and thus calcium-dependent cellular functions (for reviews22,44,50,48).


cAMP Response Element Binding GABAB Receptor Fetal Alcohol Syndrome Cerebellar Cell Young Adult Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alkon, D.L., 1989, Memory storage and neuronal systems, Scientific American.Google Scholar
  2. 2.
    Beal, M.F., 1995, Aging, energy, and oxidative stress in neurodegenerative diseases, Ann. Neuol., 18:357–366.CrossRefGoogle Scholar
  3. 3.
    Behnisch, T. and Reymann, K.G., 1993, Co-activation of metabotropic glutamate and N-methyl-D-aspartate receptors is involved in mechanisms of long-term potentiation maintenance in rat hippocampal CA1 neurons, Neuroscience, 54:37–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Bliss, T.V.P. and Lom., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anesthesized rabbit following stimulation of the perforant path, J. Physiol., (London), 232:331–356.PubMedGoogle Scholar
  5. 5.
    Bortolotto, Z.A. and Collingridge, G.L., 1993, Characterization of LTP induced by the activation of glutamate metabotropic receptors in area CA1 ofther hippocampus, Neuropharmacol., 32:1–9.CrossRefGoogle Scholar
  6. 6.
    Bottenstein, J.E., Skaper, S.D., Varon, S.S., and Sato, G.H., 1980, Selective survival of neurons from chick embryo sensory ganglionic dissociates utilizing serum-free supplemented medium, Exp. Cell Res., 125:183–190.PubMedCrossRefGoogle Scholar
  7. 7.
    Bowery, N.G., 1993, GABAB receptor pharmacology, Annu. Rev. Pharmacol. Toxicol., 33:109–147.PubMedCrossRefGoogle Scholar
  8. 8.
    Bowery, N.G. and Brown, D.A., 1997, The cloning of GABAB receptors, Nature, 386:223–224.PubMedCrossRefGoogle Scholar
  9. 9.
    Brucato, F.H., Levin, E.D., Mott, D.D., Lewis, D.V., Wilson, W.A., and Swartzwelder, H.S., 1996, Hippocampal long term potentiation and spatial learning in the rat: effects of GABAB receptor blockade, Neuroscience, 74:331–339.PubMedCrossRefGoogle Scholar
  10. 10.
    Damgaard, I., Trenkner, E., Sturman, J.A., and Schouboe, A., 1996, Effect of K+-and kainate-mediated depolarization on survival and functional maturation of GABAergic and glutamatergic neurons in cultures of dissociated mouse cerebellum, Neurochem. Res., 21:267–275.PubMedCrossRefGoogle Scholar
  11. 11.
    Dash, P.K., Moore, A.N., Dixon, C.E., 1995, Spatial memory deficits, increased phosphorylation of the transcription factor CREB, and induction of the AP-1 complex following experimental brain injury, J. Neurosci., 15:2030–2039.PubMedGoogle Scholar
  12. 12.
    Desroches, D., White, S.S., and Benno, R.H., 1987, Effects of acute alcohol administration on maternal calcium metabolism and fetal develpment in mice, Alcohol and Drug Research, 7:443–452.PubMedGoogle Scholar
  13. 13.
    Devaud, L.L., Fritschy, J.M., Sieghart, W., and Morrow, A.L., 1997, Bidirectional alterations of GABAA receptor subunit peptide levels in rat cortex during chronic ethanol consumption and withdrawal, J. Neurochem., 69:126–130.PubMedCrossRefGoogle Scholar
  14. 14.
    Dumas, R.M. and Rabe, A., 1994, Augmented memory loss in aging mice after one embryonic exposure to alcohol, Neurotoxicol. Teratol., 16:605–612.PubMedCrossRefGoogle Scholar
  15. 15.
    Dykens, J.A., Stern, A., and Trenkner, E., 1987, Kainate-induced death of cerebellar neurons in vitro is mediated by xanthine oxidase, J. Neurochem., 49:1222–1228.PubMedCrossRefGoogle Scholar
  16. 16.
    El Idrissi, A., Harris, C., and Trenkner, E. 1997, Taurine modulates glutamate-and growth factors mediated signaling mechanisms, This volume. Google Scholar
  17. 17.
    Ernster, L. and Schatz, G., 1981, Mitochondria: a historical review, J. Cell Biol., 91:227s–255s.PubMedCrossRefGoogle Scholar
  18. 18.
    Fiez, J.A., 1996, Cerebellar contributions to cognition, Neuron, 16:13–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Galaretta, M., Bustamante, J., Rio, R.M., and Solis, J.M., 1996, A new neuromodulatory action of taurine: long-lasting increase of synaptic potentials, in: Taurine 2, Basic and Clinical Aspects, Huxtable et. al., eds., Plenum Press, pp. 463-471.Google Scholar
  20. 20.
    Gorter, J.A. and de Bruin, J.P.C., 1992, Chronic neonatal MK-801 treatment results in an impairment of spatial learning in the adult rat, Brain Res., 580:12–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoffman, D.A., Magee, J.C., Colbert, C.M., and Johnston, D., 1997, K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons, Nature, 387:869–875.PubMedCrossRefGoogle Scholar
  22. 22.
    Huxtable, R.J., 1992, Physiological actions of taurine, Physiological Rev., 72:101–163.Google Scholar
  23. 23.
    Kandel, E.R. and O’Dell, T.J., 1992, Are adult learning mechanisms also used for development?, Science, 258:243–245.PubMedCrossRefGoogle Scholar
  24. 24.
    Kaupmann, K., Huggel, K., Heid, J., Flor, P.J., Bischoff, S., Mickel, S.J., McMaster, G., Angst, C., Bittiger, H., Froestl, W., and Bettler, B., 1997, Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors, Nature, 386:239–246.PubMedCrossRefGoogle Scholar
  25. 25.
    Kentroti, S. and Vernadakis, A., 1992, Ethanol administration during early embryo-genesis affects neuronal phenotypes at a time when neuroblasts are pluripotential, J. Neurosci. Res., 33:617–625.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim, U., Sanchez-Vives, M.V., and McCormick, D.A., 1997, Functional dynamics of GABAergic inhibition in the thalamus, Science, 278:130–134.PubMedCrossRefGoogle Scholar
  27. 27.
    Kogan, J.H., Frankland, P.W., Blendy, J.A., Coblentz, J., Marowitz, Z., Schutz, G., and Silva, A.J., 1996, Spaced training induces normal long-term memory in CREB mutant mice, Current Biology, 7:1–11.CrossRefGoogle Scholar
  28. 28.
    Kontro, P., Korpi, E.R., and Oja, S.S., 1990, Taurine interacts with GABAA and GABAB receptors, in: Taurine: Functional Neurochem. Physiol. and Cardiol., Pasantes-Morales, H., Martin, D.L., Shain, W., Martin del Rio, R., eds., Wiley-Liss, New York, pp. 83–94.Google Scholar
  29. 29.
    Malcangio, M., Bartolini, A., Ghelardini, C., Malmberg-Aiello, P., Franconi, F., and Giotti, A., 1989, Effect of ICV taurine on the impairment of learning, convulsions and death caused by hypoxia, Psychopharmacol., 98:316–320.CrossRefGoogle Scholar
  30. 30.
    Malenka, R.C., 1992, The role of post-synaptic calcium in the induction of long term potentiation, Mol. Neurobiol., 5:289–295.CrossRefGoogle Scholar
  31. 31.
    Martinez, J.L. and Derrick, B.E., 1996, Long-term potentiation and learning, Annu. Rev. Psychol., 47:173–203.PubMedCrossRefGoogle Scholar
  32. 32.
    Mattson, M.P., Guthrie, P.B., and Kater, S.B., 1989, A role for Na+-dependent Ca2+ extrusion in protection against excitotoxicity, FASEB J., 3:2519–2526.PubMedGoogle Scholar
  33. 33.
    Mayford, M., Abel, T., and Kandel, E.R., 1995, Transgenic approaches to cognition, Curr. Opin. Neurobiol., 5:141–148.PubMedCrossRefGoogle Scholar
  34. 34.
    Mihic, S.J., Ye, Q., Wick, M.J., and Koltchine, V.V., 1997, Sites of alcohol and volatile anesthetic action on GABAA and glycine receptors, Nature, 389:385–389.PubMedCrossRefGoogle Scholar
  35. 35.
    Morris, R.G.M., Anderson, E., Lynch, G.S., and Baudry, M., 1986, Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5, Nature, 319:774–776.PubMedCrossRefGoogle Scholar
  36. 36.
    Mott, D.D. and Lewis, D.V., 1991, Facilitation of the induction of long-term potentiation by GABAB receptors, Science, 252:1718–1720.PubMedCrossRefGoogle Scholar
  37. 37.
    Nakagawa, Y. and Takashima, T., 1997, The GABAB receptor antagonist CGP36742 attenuates the baclofen-and scopolamine-induce deficit in Morris water maze task in rats, Brain Res., 766:101–106.PubMedCrossRefGoogle Scholar
  38. 38.
    Ramirez, O.A., Nordholm, A.F., Gellerman, D., Thompson, J.K., and Thomson, R.F., 1997, The conditioned eye-blink response: a role of GABAB receptors, Pharmacol, Biochem. and Behavior, 58:127–132.CrossRefGoogle Scholar
  39. 39.
    Sah, P., 1996, Ca2+-activated K+ currents in neurons: types, physiological roles and modulation, Trends Neurosci., 19:150–154.PubMedCrossRefGoogle Scholar
  40. 40.
    Schurr, A., Tseng, M.T., West, C.A., and Rigor, B.M., 1987, Taurine improves the recovery of neuronal function following hypoxia: an in vitro study, Life Sci., 40:2059–2066.PubMedCrossRefGoogle Scholar
  41. 41.
    Seeburg, P.H., Wisden, W., and Verdoorn, T.A., 1990, The GABAA receptor family: molecular and functional diversity, Cold Spring Harbor Symposia (Vol. LV.) pp. 29-40.Google Scholar
  42. 42.
    Shibley, I.A. and Pennington, S.N., 1997, Metabolic and mitotic changes associated with fetal alcohol syndrome, Alcohol and Alcoholism, 32:423–434.PubMedCrossRefGoogle Scholar
  43. 43.
    Shors, T.J. and Matzel, L.D., 1997, Long-term potentiation: What’s learning got to do with it? Brain and Behavioral Sciences, in press.Google Scholar
  44. 44.
    Sturman, J.A., 1993, Taurine in development, Physiol. Rev., 73:119–147.PubMedGoogle Scholar
  45. 45.
    Swartzwelder, H.S., Wilson, W.A., and Tayyeb, M.I., 1995, Differential sensitivity of NMDA receptor-mediated synaptic potentials to ethanol in immature versus mature hippocampus, Alcohol Clin. Exp. Res., 19:320–323.PubMedCrossRefGoogle Scholar
  46. 46.
    Thompson, R.F. and Krupa, D.J., 1994, Organization of memory traces in the mammalian brain, Annu. Rev. Neurosci., 17:519–549.PubMedCrossRefGoogle Scholar
  47. 47.
    Trenkner, E., El Idrissi, A., and Harris, C., 1996, Balanced interaction of growth factors and taurine regulate energy metabolism, neuronal survival, and function of cultured mouse cerebellar cells under depolorizing conditions, in: Taurine 2, Basic and Clinical Aspects, Huxtable, R., et. al., eds., Plenum Press, pp. 507-517.Google Scholar
  48. 48.
    Trenkner, E., Lui, D., Harris, C., and Sturman, J.A., 1994, Regulation of protein kinase C activity by taurine and lalanine during excitotoxicity in cat and mouse cerebellar cultures, in: Taurine in Health and Disease, Huxtable, R. and Michalk, D.V., eds., Plenum Press, Adv. Exp. Med. Biol., NY, pp. 309-316.Google Scholar
  49. 49.
    Trenkner, E., 1991, Cerebellar cells in culture, in: Culturing Nerve Cells, Banker G. and Goslin, K., eds., MIT Press, pp. 283.Google Scholar
  50. 50.
    Trenkner, E., 1990, The role of taurine and glutamate during early postnatal cerebellar development, in: Excitatory amino acids and neuronal plasticity, Ben-Ari, Y., ed., in: Adv. Exp. Med. and Biol., Plenum Press, Vol. 268: pp. 239-244.Google Scholar
  51. 51.
    Trenkner, E. and Dykens, J.A., 1986, Taurine moderates kainate and kynurenine excitotoxicity in vitro, Soc. Neurosci. Abstr., 12:96.Google Scholar
  52. 52.
    Trenkner, E. and Sidman, R., 1977, Histogenesis of mouse cerebellum in microwell cultures: cell reaggregation and migration, fiber and synapse formation, J. Cell Biol., 75:915–940.PubMedCrossRefGoogle Scholar
  53. 53.
    Wangen, K., Myhrer, T., Moldstad, J.N., Iversen, E.G., and Fonnum, F., 1997, Modulatory treatment of NMDA receptors in neonatal rats affects cognitive behavior, Dev. Brain Res., 99:126–130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • E. Trenkner
    • 1
    • 2
  • A. El Idrissi
    • 1
    • 2
  • R. Dumas
    • 1
  • A. Rabe
    • 1
  1. 1.New York State Institute for Basic Research and Developmental DisabilitiesStaten IslandUSA
  2. 2.CUNY Graduate School and University CenterNew YorkUSA

Personalised recommendations