Advertisement

Electrical and Mechanical Characterization of PEO-LiN(CF3SO2)2 Electrolytes

  • Hakima Halitim
  • Djafer Benachour
  • Abderrezak Hammouche

Abstract

Solid electrolytes based on complexes of poly(ethylene oxide) with lithium salts seem to be very promising materials for use in high energy density lithium batteries.1–3 Such electrolytes may also have the important attribute of mechanical flexibility which greatly facilitates the design of an all-solid state battery and, on the other hand, allows the electrolyte to accommodate for the volume change of the cathode during the charge-discharge cycles of the battery. Since it was revealed that ionic conduction takes place principally in the amorphous phase,4 several studies have focused on the synthesis of amorphous solid electrolytes; in most cases the solution has been sought with regard to the solvent by means of cross-linking5,6 or by addition of small-molecule plasticizers,7 but few studies have been directed towards the salts.

Keywords

Polymer Electrolyte Ethylene Oxide Solid State Ionic Differential Thermal Analysis Curve Lithium Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Armand, Polymer solid electrolytes — an overview, Solid State Ionics, 9-10; 745 (1983).Google Scholar
  2. 2.
    C.A. Vincent, Polymer electrolytes, Prog. Solid St. Chem., 17; 145 (1987).CrossRefGoogle Scholar
  3. 3.
    Y. Chen, and J.W. Evans, Three-dimensional thermal modeling of lithium-polymer batteries under galvanostatic discharge and dynamic power profile, J. Electrochem. Soc., 141; 2947 (1994).CrossRefGoogle Scholar
  4. 4.
    C. Berthier, W. Gorecki, M. Minier, M. Armand, J.M. Chabagno, and P. Rigaud, Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts, Solid State Ionics, 11; 91 (1983).CrossRefGoogle Scholar
  5. 5.
    M. Watanabe, S. Nagano, K. Sanui, and N. Ogata, Ionic conductivity of network polymers from polyethylene oxide) containing lithium perchlorate, Polymer J., 18; 809 (1986).CrossRefGoogle Scholar
  6. 6.
    A. Killis, J.F. Le Nest, A. Gandini, and H. Cheradame, Dynamic mechanical properties of crosslinked polyurethanes containing sodium tetraphenylborate, J. Polymer Science: Polymer Physics, ed., 19; 1073(1981).Google Scholar
  7. 7.
    Y. Ito, K. Miyauchi, and T. Kudo, Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex with low molecular weight polyethylene glycol), J. Mat. Sci., 22; 1845 (1987).CrossRefGoogle Scholar
  8. 8.
    M. Armand, W. Gorecki, and R. Andréani, Perfluorosulphonimide salts as solute for polymer electrolytes, in: Proceedings of the Second International Symposium on Polymer Electrolytes, B. Scrosati, ed., Elsevier Applied Science Pub., London (1990).Google Scholar
  9. 9.
    A. Vallée, S. Besner, and J. Prud’Homme, Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, L1CF3SO3 and LiClO4: thermal properties and conductivity behaviour, Electrochim. Acta, 9; 1579 (1992).CrossRefGoogle Scholar
  10. 10.
    S. Sylla, J.Y. Sanchez, and M. Armand, Electrochemical study of linear and crosslinked PEO-based polymer electrolytes, Electrochim. Acta, 9; 1699 (1992).CrossRefGoogle Scholar
  11. 11.
    A.V. Chadwick, J.H. Strange, and M.R. Worboys, Ionic transport in polyether electrolytes, Solid State Ionics, 9–10; 1155(1983).CrossRefGoogle Scholar
  12. 12.
    S. Bhattacharja, S.W. Smoot, and D.H. Whitmore, Cation and anion diffusion in the amorphous phase of the polymer electrolyte (PEO)sLiCF3SO3, Solid State Ionics, 18–19; 306 (1986).CrossRefGoogle Scholar
  13. 13.
    C.D. Robitaille, and D. Fauteux, Phase diagrams and conductivity characterization of some PEO-LiX electrolytes, J. Electrochem. Soc. 133; 315 (1986).CrossRefGoogle Scholar
  14. 14.
    D. Fauteux, Diagramme de phase, propriétés de transport et stabilité électrochimique d’électrolytes polymères, Thèse de Doctorat, Université du Quèbec (1986).Google Scholar
  15. 15.
    B. Zachau-Christiansen, K. West, and T. Jacobsen, Lithium insertion into VO2, Mat. Res. Bull., 20; 485 (1985).CrossRefGoogle Scholar
  16. 16.
    S. Sinha, and D.W. Murphy, Lithium intercalation in cubic TiS2, Solid State Ionics, 20; 81 (1986).CrossRefGoogle Scholar
  17. 17.
    G. Champetier, and L. Monnerie, Introduction à la Chimie Macromoléculaire, Masson, ed., Paris (1969).Google Scholar
  18. 18.
    A.J. Wills, G. Capaccio, and I.M Ward, Plastic deformation of polypropylene: effect of molecular weight on drawing behavior and structural characteristics of ultra-high-modulus products, J. Polymer Sci.: Polymer Physics, ed., 18; 493 (1980).Google Scholar
  19. 19.
    D.W. Van Krevelen, Properties of Polymers, Elsevier Science Publishing Company, New York (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hakima Halitim
    • 1
  • Djafer Benachour
    • 1
  • Abderrezak Hammouche
    • 1
  1. 1.Laboratoire d’Énergétique et d’Électrochimie des SolidesICI, UniversitéSétifAlgeria

Personalised recommendations