Skip to main content

Recent Progress in Nonlinear Photonic Devices and Phenomena Based on Organic Materials

  • Chapter
Science and Technology of Polymers and Advanced Materials

Abstract

There has been a great deal of activity in the last few years in the application of nonlinear organic materials to optical phenomena (excluding electro-optics). The goal of this paper is to focus on recent progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Zyss and D.S. Chemla, “Quadratic Nonlinear optics and Optimization of the Second-Order Nonlinear Optical Response of Molecular Crystals”, in Nonlinear and Optical Properties of Organic Molecules and Crystals, Vol 1, pp23–192 eds. D.S. Chemla and J. Zyss, (Academic Press, Orlando, 1987).

    Chapter  Google Scholar 

  2. articles in Polymers for Lightwave Technology and Integrated Optics, edited by L.A. Hornak (Marcel Dekker, N.Y., 1992).

    Google Scholar 

  3. G. Wegner, Z. Naturforsch, 24B:824 (1969).

    Google Scholar 

  4. C. Sauteret, J.P. Hermann, R. Frey, F. Pradere, J. Ducuing, R.H. Baughman and R.R. Chance, Phys. Rev. Lett., 36:956 (1976). 5.

    Google Scholar 

  5. G.I. Stegeman, in Frontiers of Polymer Research, pp63–70 edited by P.N. Prasad and J.K. Nigam, (Plenum Press, New York, 1991)

    Chapter  Google Scholar 

  6. D. Pugh and J.O. Morley, in Nonlinear Optical Properties of Organic Molecules and Crystals Vol 1, pp193–226 D.S. Chemla and J. Zyss eds. (Academic Press, Orlando, 1987).

    Chapter  Google Scholar 

  7. Ch. Bosshard, G. Knopfle, Ph. Pretre, S. Follonier, C. Serbutoviez and P. Gunter, “Molecular Crystals and Polymers for Nonlinear Optics”, Opt. Engin., 34:1951–60 (1995).

    Article  CAS  Google Scholar 

  8. G. Knopfle, R. Schlesser, R. Ducret and P. Gunter, “Optical and Nonlinear Optical Properties of 4′-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystals”, Nonlin. Opt., 9:143–9(1995).

    CAS  Google Scholar 

  9. W.H. Steier, Y. Shi, L. Yu, M. Chen and L.R. Dalton, Proceedings of SPIE Symposium on the Nonlinear Optical Properties of Organic Materials V, SPIE 1775:379–390 (San Diego, 1992).

    Article  Google Scholar 

  10. C.Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe and M. Kawahara, Appl. Phys. Lett., 63:1170 (1994).

    Article  Google Scholar 

  11. K. Gallo, G. Assanto and G.I. Stegeman, “Efficient Wavelength Shifting Over the Erbium Amplifier Bandwidth Via Cascaded Second Order Processes in Lithium Niobate Waveguides”, Appl Phys. Lett., submitted.

    Google Scholar 

  12. G.I. Stegeman, D.J. Hagan and L. Torner, J. Optical and Quant. Electron., 28:1691 (1996).

    Article  Google Scholar 

  13. M.M. Fejer, G.A. Magel, D.H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation”, IEEE, J. Quant. Electron., 28:2631–54, (1992).

    Article  Google Scholar 

  14. T. Suhara and H. Nishihara, IEEE J. Quant. Electron, 26:1265–84, (1990).

    Article  CAS  Google Scholar 

  15. G. Khanarian, R.A. Norwood, D. Haas, B. Feuer and D. Karim, Appl. Phys. Lett., 57:977–9 (1990).

    Article  CAS  Google Scholar 

  16. Khanarian, G., Norwood, R.A., Haas, D., Feuer, B., and Karim, D. “Phase-matched secondharmonic generation in a polymer waveguide. Applied Physics Letters, 57: 977–979, (1990).

    Article  CAS  Google Scholar 

  17. Rikken, G.L.J.A., Seppen, C.J.E., Nijhuis, S., and Staring, E. (1990). “Poled Polymers for frequency doubling of diode lasers” Proceedings of the SPIE, 1337: 35–43.

    Article  CAS  Google Scholar 

  18. Y. Azumai, M. Kishimoto, H. Sato, ‘Efficient second-harmonic generation with a slab waveguide composed of periodically poled organic copolymer’, Jpn. J. Appl. Phys., 31: 1358–1364,1992.

    Article  CAS  Google Scholar 

  19. G.L.J.A. Rikken, C.J.E. Seppen, S. Nijhuis and E.W. Meijer, Appl. Phys. Lett., 58:435–7 (1991).

    Article  CAS  Google Scholar 

  20. M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, „Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5¼m”, Appl Phys. Lett. 68:1183–1185(1996).

    Article  Google Scholar 

  21. R.A. Norwood and G. Khanarian,:‘Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide’, Electron. Lett., 26:2105–2106, (1990).

    Article  Google Scholar 

  22. Azumai, Y., Kishimoto, M., Seo, I., and Sato, H. (1994). “Enhanced SHG power using periodic poling of vinylidene cyanide / vinyl acetate copolymer” IEEE Journal of Quantum Electronics, 30: 1924–1933.

    Article  CAS  Google Scholar 

  23. S. Tomaru, T. Watanabe, M. Hikata, M. Amano, Y. Shuto, I. Yokohama, T. Kaino, M. Asobe,: ‘Quasi-phase-matched second harmonic generation in a polymer waveguide with a periodic poled structure’, Appl Phys. Lett., 68:1760–1762, (1996).

    Article  CAS  Google Scholar 

  24. Y. Shuto, T. Watanabe, S. Tomura, I. Yokohama, M. Hikita and M. Amano, “Quasi-Phase-Matched Second Harmonic Generation in Diazo-Dye-Substituted Polymer Channel Waveguides”, IEEEJ. Quant, electron., 33:349–357 (1997).

    Article  CAS  Google Scholar 

  25. G. Khanarian, M.A. Mortazavi and A.J. East, Appl Phys. Lett., 63:1462 (1993).

    Article  CAS  Google Scholar 

  26. Suhara, T., Morimoto, T., and Nishihara, H. “Optical second-harmonic generation by quasi-phase-matching in channel waveguide structure using organic molecular crystal” IEEE Photonics Technology Letters, 5: 934–937(1993).

    Article  Google Scholar 

  27. Marowsky, G., Canto-Said, E.J., Lehmann, S., Sieverdes, F., and Bratz, A. “Phase-matched second-harmonic generation in planar waveguides” Physical Review B, 48: 18114–18118(1993).

    Article  CAS  Google Scholar 

  28. O. Sugihara, T. Kinoshita, M. Okaba, S. Kunioka, Y. Nonaka, K. Sasaki, ‘Phase-matched second harmonic generation in poled dye/polymer waveguide’, Appl Optics, 30: 2957–2960, 1991.

    Article  CAS  Google Scholar 

  29. Azumai, Y., Seo, I., and Sato, H. “Enhanced SHG Power in Slab-Waveguide Composed of VDCN/VAc Copolymer Film at 1.06 urn and 2.94 μm Lines” Nonlinear Optics, 1: 129–140. (1991b).

    Google Scholar 

  30. Rikken, G.L.J.A. “Wavelength-uncritical second-harmonic generation in multilayer waveguides” Optics Letters, 18: 1916–1918 (1993a).

    Article  CAS  Google Scholar 

  31. T.L. Penner, N.J. Armstrong, C.S. Willand, J.S. Schildkraut and D.R. Robello, Proceedings of SPIE Symposium on Nonlinear Optical Properties of Organic Materials IV, 1560:377–86(1991).

    Article  CAS  Google Scholar 

  32. T.L. Penner, H.R. Motschmann, N.J. Armstrong, M.C. Ezenyilimba, and D.J. Williams, „Efficient phase-matched second-harmonic generation of blue light in an organic waveguide“, Nature 367:49–51 (1994).

    Article  CAS  Google Scholar 

  33. H. Ito and H. Inaba, „Efficient phase-matched second-harmonic generation method in four-layered optical-waveguide structure“ Opt. Lett. 2:139–141 (1978).

    Article  CAS  Google Scholar 

  34. M. Flörsheimer, M. Küpfer, Ch. Bosshard, H. Looser and P. Günter, „Phase-matched optical second-harmonic generation in Langmuir-Blodgett film waveguides by mode conversion“, Adv. Mater. Commun. 4:795–798 (1992).

    Article  Google Scholar 

  35. M. Kupfer, M. Florsheimer, Ch. Bosshard and P. Gunter: ‘Phase-matched second harmonic generation in χ(2)-inverted Langmuir-Blodgett waveguide structures’, Electron. Lett., 29:2033–2034,(1993).

    Article  Google Scholar 

  36. K. Clays, J. S. Schildkraut, and D. J. Williams, „Phase-matched second-harmonic generation in a four-layered polymeric waveguide“, J. Opt. Soc. Am. B 11:655–664 (1994).

    Article  CAS  Google Scholar 

  37. M. Jaeger, G.I. Stegeman, G.R. Mohlmann, M.C. Flipse and M.J.B. Diemeer,“Second Harmonic Generation in Polymer Channel Waveguides Using Modal Dispersion”, Electr. Lett., 32:2009–2010 (1996).

    Article  CAS  Google Scholar 

  38. M. Jaeger, G.I. Stegeman, M. Diemeer, C. Flipse and G. Mohlmann, “Modal Dispersion Phase-Matching over 7 mm Length in Overdamped Polymeric Channel Waveguides”, Appl Phys. Lett., 69:4139–41 (1997).

    Article  Google Scholar 

  39. W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jager, G.I. Stegeman, M. Ahlheim, M. Stahelin, B. Zysset, F. Lehr, M. Diemeer and R. Felipse, “Polymer Waveguide for Modal Dispersion Phase Matched Second-Harmonic Generation”, Appl Phys. Lett., submitted.

    Google Scholar 

  40. M. Jaeger, G.I. Stegeman, S. Yilmaz, W. Wirges, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stahelin, F. Lehr, M. Diemeer and M.C. Flipse, “Poling and Characterization of Polymer Waveguides for Modal Dispersion, Phase-Matched Second-Harmonic Generation”, J. Opt. Soc. Am., B (special issue), submitted.

    Google Scholar 

  41. M.A. Arbore and M.M. Fejer, Opt. Lett., 22:151 (1997).

    Article  CAS  Google Scholar 

  42. T. C. Kowalczyk, K. D. Singer, and P. A. Cahill „Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide“, Opt. Lett. 20:2273–2275 (1995).

    Article  CAS  Google Scholar 

  43. A. Harada, Y. Okazaki, K. Kamiyama and S. Umegaki, Appl. Phys. Lett., 59:1535–7 (1991).

    Article  CAS  Google Scholar 

  44. T. Uemiya, N. Uenishi, S. Okamoto, K. Chikuma, K. Kumata, T. Kondo, R. Ito and S. Umegaki, Appl. Optics, 31:7581–6 (1992).

    Article  CAS  Google Scholar 

  45. P. Kerkoc, Ch. Bosshard, H. Arend, P. Günter, Appl. Phys. Lett. 54:487 (1989).

    Article  CAS  Google Scholar 

  46. Huang, G.-F., Hwang, M.-Y., Chong, S.W., and Lin, J.T. “Characteristics on nonlinear organic crystal o 4-(N, N-dimethylamino)-3-acetamidonitrobenzene” Optics Communications, 82: 539–543(1991).

    Article  CAS  Google Scholar 

  47. Kondo, T., Morita, R., S., Ogasawara, N., Umegaki, S., and Ito, R. “A nonlinear optical organic crystal for waveguiding SHG devices: (−)2-(α-methylbenzylamino)-5-nitropyridine (MB ANP)” Japanese Journal of Applied Physics, 28:1622–1628 (1989).

    Article  CAS  Google Scholar 

  48. Ch. Bosshard, M. Flörsheimer, M. Küpfer and P. Günter, Opt. Commun.,” Cerenkov-type phase-matched second-harmonic generation in DCANP Langmuir-Blodgett film waveguides”, 85:247–53 (1991).

    CAS  Google Scholar 

  49. K. Clays, N. J. Armstrong, and T. L. Penner, “Blue and green Cerenkov-type second-harmonic generation in a polymeric Langmuir-Blodgett waveguide” J. Opt. Soc. Am. B 10:886–893 (1993).

    Article  CAS  Google Scholar 

  50. Asai, N., Tamada, H., Fujiwara, I., and Seto, J. “An optical waveguide with a nonlinear optical susceptibility inversion structure in the thickness direction” Journal of Applied Physics, 72: 4521–4528(1992).

    Article  CAS  Google Scholar 

  51. Sugihara, O., Kunioka, S., Nonaka, Y., Aizawa, R., Koike, Y., Kinoshita, T., and Sasaki, K. “Second-harmonic generation by Cerenkov-type phase matching in a poled polymer waveguide” Journal of Applied Physics, 70: 7249–7252 (1991b).

    Article  CAS  Google Scholar 

  52. Azumai, Y. and Sato, H. “Improvement of the Cerenkov radiative second-harmonic generation in the slab waveguide with a periodic nonlinear optical susceptibility” Japanese Journal of Applied Physics, 32: 800–806(1993).

    Article  CAS  Google Scholar 

  53. Sato, H., Azumai, Y., and Nozawa, H. “Effect of chirped nonlinear optical susceptibility corrugation on the Cerenkovian second-harmonic power in a slab waveguide” Optics Letters, 19: 93–95(1994).

    Article  CAS  Google Scholar 

  54. Noordman, O.F.J., van Hülst, N.F., and Böiger, B. “Cerenkov-type second-harmonic generation in thin planar calix4]arene waveguiding films” Journal of the Optical Society of America B, 12: 2398–2405(1995).

    Article  CAS  Google Scholar 

  55. H. Sato and Y. Azumai, J Opt. Soc. Am. B, 10:894–897 (1993).

    Article  CAS  Google Scholar 

  56. Chen, Y., Kamath, M., Jain, A., Kumar, J., and Tripathy, S. “Cerenkov type phase-matched second harmonic generation in polymeric channel waveguides” Optics Communications, 101: 231–234(1993).

    Article  CAS  Google Scholar 

  57. Cazeca, M., Jiang, X.L., Masse, C.E., Kamath, M., Jeng, R.J., Kumar, J., and Tripathy, S.K. “Stable highly transparent nonlinear optical polymer for laser frequency doubling” Optics Communications, 117: 127–132(1995).

    Article  CAS  Google Scholar 

  58. R. Normandin and G.I. Stegeman, Opt. Lett., 4:58–60 (1979).

    Article  CAS  Google Scholar 

  59. R. Normandin, R.L. Williams and F. Chatenoud, Electron. Lett., 26:906–7 (1990).

    Article  Google Scholar 

  60. S. Janz, E. Frlan, H. Dai, F. Chatenoud and R. Normandin, Opt. Lett., 17:1718–20 (1992).

    Article  CAS  Google Scholar 

  61. A. Otomo, S. Mittler-Neher, C. Bosshard, G.I. Stegeman, W.H.G. Horsthuis and G.R. Mohlmann, “Second harmonic generation by counter propagating beams in DANS side chain polymer channel waveguides”, Appl Phys. Lett., 63:3405–7, (1993).

    Article  Google Scholar 

  62. A. Otomo, G.I. Stegeman, W.H.G. Horsthuis and G.R. Mohlmann, “Quasi-phase-matched Surface Emitting Second Harmonic Generation in Poled Polymer Waveguides”, Appl. Phys. Lett., 68: 3683–5(1996).

    Article  CAS  Google Scholar 

  63. A. Otomo, G.I. Stegeman, M.C. Flipse, M.B.J. Diemeer, W.G.H. Horsthuis and G.R. Mohlmann, “Nonlinear Contrawave Mixing Devices in Poled Polymer Waveguides”, J. Opt. Soc. Am., B (special issue), submitted.

    Google Scholar 

  64. Ch. Bosshard, A. Otomo, G.I. Stegeman, M. Kupfer, M. Florsheimer and P. Gunter, “Surface emitted green light generated in Langmuir-Blodgett film waveguides”, Appl Phys. Lett., 64:2076–8(1994).

    Article  CAS  Google Scholar 

  65. M.A. Mortazavi, D.R. Yankelevich, A. Dienes, A. Knoesen, S.T. Kowel and S. Dijaili, Appl. Opt., 28:3278–80 (1989).

    Article  CAS  Google Scholar 

  66. D.R. Yankelevich, A. Dienes, A. Knoesen, R.W. Schoenlein and C.V. Shank, IEEE J. Quant. Electron., 28:2398–2403 (1992).

    Article  CAS  Google Scholar 

  67. D. Josse, S.X. Dou, J. Zyss, P. Andreazza and A. Perigaud, “Near-infrared optical parametric oscillation in a N-(4-nitrophenyl)-L-prolinol molecular crystal”, Appl Phys. Lett., 61:121–3 (1992).

    Article  CAS  Google Scholar 

  68. G.I. Stegeman, “Material figures of merit and implications to all-optical switching”, SPIE Proceedings on Nonlinear Optical Properties of Advanced Materials, 1852:75–89 (1993).

    Article  CAS  Google Scholar 

  69. B. Lawrence, W. Torruellas, M. Cha, G.I. Stegeman, J. Meth, S. Etemad and G. Baker, “Identification and Role of Two Photon Absorption in the π-Conjugated Polymer Paratoluene-Sulfonate”, Phys. Rev. Lett., 73:597–600, (1994).

    Article  CAS  Google Scholar 

  70. J. Swiatkiewicz, P.N. Prasad, F.E. Karasz, M.A. Drury and P. Glatkowski, “Anisotropy of the linear and nonlinear third-order nonlinear optical properties of a stretch-oriented polymer film of poly-2,5-dimethoxy paraphenylvinylene”, Appl. Phys. Lett., 56:892–4 (1990).

    Article  CAS  Google Scholar 

  71. Th. Gabler, R. Waldhausl, A. Brauer, F. Michelotti, H.-H. Horhold and U. Bartuch, “Spectral Broadening Measurements in Poly(phenylene vinylene) polymer channel waveguides”, Appl Phys. Lett., 70:928–930 (1997).

    Article  CAS  Google Scholar 

  72. B. Lawrence, M. Cha, J.U. Kang, W. Torruellas, G.I. Stegeman, G. Baker, J. Meth and S. Etemad, “Large Purely Refractive Nonlinear Index of Single Crystal P-Toluene Sulfonate (PTS) at 1600 nm”, Electron. Lett., 30:447–8 (1994).

    Article  CAS  Google Scholar 

  73. A. Samoc, M. Samoc, M. Woodruff and B. Luther-Davies, “Tuning the properties of poly(p-phenylvinylene) for use in all-optical switching”, Opt. Lett., 20:1241–3 (1995).

    Article  CAS  Google Scholar 

  74. P.D. Townsend, J.L. Jackel, G.L. Baker, J.A. Shelbourne III, and S. Etemad, Appl. Phys. Lett., 55:1829 (1989).

    Article  CAS  Google Scholar 

  75. K. Sasaki, S. Sasaki and O. Furukawa, Materials Research Society Symposium Proceedings on Electrical Optical and Magnetic Properties of Organic Solid State Materials, Vol. 247, eds. L.Y. Chiang, A.F. Garito and D.J. Sandman, 141-9 (1992).

    Google Scholar 

  76. R.A. Norwood, J.R. Sounik, D. Holcomb, J. Popolo, D. Swanson, R. Spitzer and G. Hansen, Opt. Lett., 17:577–9(1992).

    Article  CAS  Google Scholar 

  77. N. Akhmediev and A. Ankiewicz, “Solitons: Nonlinear Pulses and Beams”, (Chapman Hall, London, 1997)

    Google Scholar 

  78. U. Bartuch, U. Peschel, Th. Gabler, R. Waldhausl, H.H. Horhold, “Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides”, Opt. Comm. 134, 49(1997).

    Article  CAS  Google Scholar 

  79. W. Torruellas, B. Lawrence and G.I. Stegeman, “Self-focusing and Two-Dimensional Spatial Solitons in PTS”, Electr. Lett., 32:2092–4 (1996).

    Article  CAS  Google Scholar 

  80. E.M. Wright, B.L. Lawrence, W.E. Torruellas and G.I. Stegeman, “Stable self-trapping and ring formation in PTS”, Opt. Lett., 20:2481–3 (1995).

    Article  CAS  Google Scholar 

  81. B.L. Lawrence, W.E. Torruellas, G.I. Stegeman, E.M. Wright “Stable self-trapping and ring formation in polydiacetylene para-toluene sulfonate”, Proceedings QELS’96, p. 109, Anaheim, CA, June 2–7, 1996.

    Google Scholar 

  82. G. A. Swartzlander, Jr., D. R. Anderson, J. J. Regan, H. Yin, and A. E. Kaplan, Phys. Rev. Lett. 66(12):1583(1991).

    Article  Google Scholar 

  83. B. Luther-Davies and Y. Xiaoping, “Waveguides and Y Junctions formed in bulk media by using dark spatial solitons”, Opt. Lett., 17:496–8 (1992).

    Article  CAS  Google Scholar 

  84. B. Luther-Davies and X. Yang, Opt. Lett., 17:1755–7 (1992).

    Article  CAS  Google Scholar 

  85. R. Flipse and G.I. Stegeman, unpublished.

    Google Scholar 

  86. P.V. Mamyshev, C. Bosshard and G.I. Stegeman, “Generation of a periodic array of dark spatial solitons in the regime of effective amplification”, JOSA B, 11:1254–60, (1994).

    Article  CAS  Google Scholar 

  87. Ch. Bosshard, P.V. Mamyshev and G.I. Stegeman, “All-optical steering of dark spatial soliton arrays and the beams guided by them”, Opt. Lett., 19:90–2 (1994).

    Article  CAS  Google Scholar 

  88. G.P. Agrawal, “Nonlinear Fiber Optics, 2nd edition” (Academic Press, San Diego, 1995)

    Google Scholar 

  89. S. Yamakawa, H. Yamashita, T. Kinoshita and K. Sasaki, “Subpicosecond pulse propagation in dye doped polymer slab waveguide”, Digest of the OSA Topical Meeting on Nonlinear Guided Wave Phenomena, paper SuA2, pp 224-6 (Opt. Soc. Am., Washington, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stegeman, G.I., Otomo, A., Jaeger, M., Bosshard, C., Flipse, R., Canva, M. (1998). Recent Progress in Nonlinear Photonic Devices and Phenomena Based on Organic Materials. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds) Science and Technology of Polymers and Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0112-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0112-5_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0114-9

  • Online ISBN: 978-1-4899-0112-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics