Template Polymerization of Dimethylaminoethyl Methacrylate in the Presence of Poly(Acrylamide-Acrylic Acid) Induced by Gamma Radiation and its use for Removal of Metal Ions

  • T. Siyam
  • Z. H. Abd-Elatif


The polymeric material of poly (acrylamide-acrylic acid-dimethylaminoethyl methacrylate) “PAM-AA-DMAEM” was prepared by gamma radiation-induced polymerization of dimethylaminoethyl methacrylate (DMAEM) in the presence of prepared poly(acrylamide-acrylic acid) “PAM-AA” as a template polymer using a template polymerization technique.

The effect of gamma radiation on the polymerization process showed that the conversion increases with increasing the radiation dose. The obtained polymer is water-soluble polymer at low doses <10 KGy. On increasing the radiation dose the polymer was converted into a gel with the swelling degree vary from 15–36. It was found that the capacities of the obtained polymeric gels toward Cu2+ increase with increasing the absorbed dose, monomer concentration and the template polymer/monomer molar ratio.

Spectroscopic studies showed that the mechanism of the floc formation is due to the interaction between the polymer and copper sulphate is a bond formation between the active groups of polymer chains and ions of copper sulphate. The amide and tertiary amino groups form complex with Cu2+ while carboxylic group interacts with ion through ion-exchange mechanism.


Migration Hydroxyl Amide Carboxylate Acrylamide Polymer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1-.
    Z.H. Abd-Ellatif, The 1st Arab Intern. Conf. on Polymers Applications p. 67, Fac. of Sci. Univ. of Mansoura, Egypt Sept. (1991).Google Scholar
  2. 2-.
    Z.H. Abd-Ellatif, Polym Intern., 28 301 (1992).CrossRefGoogle Scholar
  3. 3-.
    A. Chapiro and J. Dulieu, Eur. Polym J., 13 536 (1977).Google Scholar
  4. 4-.
    A. Chapiro, Pure Appl. Chem., 643 (1981).Google Scholar
  5. 5-.
    A. Chapiro and R. Gouloubandi, Eur. Polym. J., 10 1159 (1974).CrossRefGoogle Scholar
  6. 6-.
    T. Siyam, Studies on Gamma Radiation-induced copolymerization of Acrylamide-Sodium Acrylate as Flocculant, M. Sc., Fac. of Sci., Cairo Univ. (1982).Google Scholar
  7. 7-.
    T. Siyam, J. Mocromol. Sci. Pure. Appl. Chem A31 (314), 383 (1994).Google Scholar
  8. 8-.
    T. Siyam, M.M. Abdel-Hamed & I.M. El-Naggar, J. Macromol. Sci. Pure. Appl. Chem. A32 (516), 871 (1995).Google Scholar
  9. 9-.
    K. Fujimori, G.T. Trainor, Polym. Bull., 9 204 (1983).CrossRefGoogle Scholar
  10. 10-.
    K. Fujimori, G.T. Trainor and M.J. Costigan, J. Polym. Sci. A-1, 22 2479 (1984).Google Scholar
  11. 11-.
    C.H. Bamford and Z. Shiki, Polym., 595 (1968).Google Scholar
  12. 12-.
    A. Chapiro, Radiation Chemistry of Polymeric System, Intersci. Pub., N. Y. Chap. IV, 121 (1962).Google Scholar
  13. 13-.
    G. Odian, Principles of Polymerization, McGraw-hill Co. N.Y. Chap, 3 255 (1970).Google Scholar
  14. 14-.
    A.F. Nikolayev, V.M. Gal, Perinm Vysoknmol Soedinm Ser, A, 9 2469 (1967).Google Scholar
  15. 15-.
    T. Siyam and R. Ayoub, 3rd Arab Inter. Conf. On Polymer Sci. and Technology, 4–7 Sept. Fac. of Sci. Mansouria Univ., Mansoria, Egypt (1995).Google Scholar
  16. 16-.
    T. Siyam, I.M. El-Naggar and HF. Aly, Nuclear and Hazardous Waste Management Inter. Topical Spectrum, 96, 66, 18–23 Aug. Seattle, Washington (1996).Google Scholar
  17. 17-.
    Candau, J. Bastide and M. Delsanti, Structureal, Elastic and Dynamic Properties of Swolen Polymer Networks, In: Advances in Polymer Science (Polymer Netwarks) Springer-Verlag Berlin Heidelberg N.Y. (1982).Google Scholar
  18. 18-.
    K. Fujimore, Polym. Bull., 8 207 (1982).CrossRefGoogle Scholar
  19. 19-.
    K. Fujimore, G.T. Trainor & M.J. Costigan, J. Polym. Sci., A-1, 22 2479 (1984).Google Scholar
  20. 20-.
    T. Siyam and E. Hanna, J. Macromol. Sci. Pure Appl. Chem., A31(314) 349 (1994).Google Scholar
  21. 21-.
    T. Siyam, J. Macromol. Sci. Pure Appl. Chem., A32(516) 801 (1995).Google Scholar
  22. 22-.
    T. Siyam, “Gamma-Radiation-Induced Preparation of Polyelectrolytes and Its use for Treatement of Waste Water” In: Chermis noff(ed), Handbook of Engineering Polymeric Materials, p. 119-135, Marel Dekker Inc. Under Puplication.Google Scholar
  23. 23-.
    M.A. Moharram, S.M. Rabie and A.Y. Daghistuni, J. Appl. Polym Sci., 50(3), 459(1993).CrossRefGoogle Scholar
  24. 24-.
    E. J. Goethals, Polymeric Amines and Ammonium Salts, (International Symposium on Polymeric Amines and Ammonium Salts), Ghent, Belgium, 24–26 Sept. 1979, pp. 229, 255, 263271, 282, Pregamon Press (1979).Google Scholar
  25. 25-.
    I. Karatas and G. Irez, J. Macromol. Sci. Pure Appl. Chem., A30(314) 241 (1993).Google Scholar
  26. 26-.
    S. Savost’yanov, V.V. Pbyugin, D.A. Kvitskays and A.N. Pohmarev, Bvestiya-I3 Vestiya Akademii-Nauk-Seria-Khimich, 6 1070 (1993).Google Scholar
  27. 27-.
    A.A. Murau, S.V. Probysh, Yu. P. Bajdarovtesv, V.S. Savost, Yanov and A.N. Pohomarev, Bvestiya-I3 Vestiya Akademii-Nauk-Seria-Khimich, 5 865 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • T. Siyam
    • 1
  • Z. H. Abd-Elatif
    • 1
    • 2
  1. 1.Nucl. Chem. Dept. Hot Laboratories CentreAtomic Energy AuthorityEgypt
  2. 2.National Resarch CentreDokki, GizaEgypt

Personalised recommendations