Synthesis of Inorganic Materials

  • Paul J. van der Put


The synthesis of inorganic compounds for use in materials1,2 is about making solids and this chapter on synthesis describes the preparation of (mainly) nonmolecular solid compounds in solid state reactions, in reactions from liquids, or reactions from the gas phase. The synthesis of inorganic molecules3 is not much different than that of organic compounds. Some methods of making coordination compounds and organometallics were given in Chapter 3. Their synthesis is not described here because, for the materials technologist, inorganic molecules are used mainly as precursors and not as part of materials.


Chemical Vapor Deposition Inorganic Material Solid State Reaction Molten Salt Physical Vapor Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Evans and L. C. de Jonghe. The Production of Inorganic Materials. Macmillan, New York (1991).Google Scholar
  2. 2.
    C.N.R. Rao. Chemical Approaches to the Synthesis of Inorganic Materials. Wiley, New York (1994).Google Scholar
  3. 3.
    J. D. Woollins (ed). Inorganic Experiments. VCH, Weinheim (1994).Google Scholar
  4. 4.
    Schwertmann, U. and R. M. Cornell. Iron Oxides in the Laboratory: Preparation and Characterization. VCH, Weinheim (1991).Google Scholar
  5. 5.
    Y. Arai. Chemistry of Powder Production. Chapman and Hall, London (1996).CrossRefGoogle Scholar
  6. 6.
    K. J. Klabunde. Free Atoms, Clusters, and Nanoscale Particles. Academic, San Diego (1994).Google Scholar
  7. 7.
    J. J. Moore and H. J. Feng. Combustion synthesis of advanced materials: Part I. Reaction parameters; Part II. Classification, applications, and modeling. Progr. Mater. Sci. 39, 243, 275 (1995).CrossRefGoogle Scholar
  8. 8.
    T. A. Ring. Fundamentals of Ceramic Powder Processing and Synthesis. Academic, San Diego (1996).Google Scholar
  9. 9.
    D. L. Smith. Thin-Film Deposition: Principles and Practice. McGraw-Hill, New York (1995).Google Scholar
  10. 10.
    A. A. Chernov and E. I. Givargizov (eds.). Modern Crystallography, Vol. 3: Crystal Growth. Springer, Berlin (1984).Google Scholar
  11. 11.
    W. E. Rhine, T. M. Shaw, R. J. Gottschall, and Y. Chen. Synthesis and processing of ceramics: scientific issues. Mat. Res. Soc. Symp. Proc. 249 (1992).Google Scholar
  12. 12.
    A. K. Varshneya. Fundamentals of Inorganic Glasses. Academic, Boston (1994).Google Scholar
  13. 13.
    A. Stein, S. W. Keller, and T. E. Mallouk. Turning down the heat: design and mechanism in solid state synthesis. Science 259, 1558 (1993).CrossRefGoogle Scholar
  14. 14.
    E. Matievic. Preparation and properties of uniform size colloids. Chem. Mater. 5, 412 (1993).CrossRefGoogle Scholar
  15. 15.
    M. Ozaki. Preparation and Properties of Well-Defined Magnetic Particles. MRS Bull. December 1989, p. 36.Google Scholar
  16. 16.
    J. R. Backhus, J. H. Harker, and R. K. Sinnet. Coulson and Richardson’s Chemical Engineering, Vols. 1, 2, and 6. Pergamon, Oxford (1990).Google Scholar
  17. 17.
    W. L. McCabe, J. C. Smith, and P. Harriott. Unit Operations of Chemical Engineering. MacGraw-Hill, New York (1993).Google Scholar
  18. 18.
    D. Segal. Chemical Synthesis of Advanced Ceramic Materials. Cambridge University Press, Cambridge (1989).CrossRefGoogle Scholar
  19. 19.
    S. C. Deevi (ed.). Manufacturing of covalent ceramics by exothermic reactions. Mater. Res. Soc. Symp. Proc. 327, 171 (1994).Google Scholar
  20. 20.
    Y. M. Chiang, J. S. Haggerty, R. P. Messner, and C. Demetry. Reaction-based processing methods for ceramic-matrix composites. Ceram. Bull. 68, 420 (1989).Google Scholar
  21. 21.
    H. Yanagida, K. Koumoto, M. Miyayama, and H. Yamada. The Chemistry of Ceramics. Wiley, Chichester (1996).Google Scholar
  22. 22.
    G. Mamantov and R. Marassi. Molten Salt Chemistry: An Introduction and Selected Applications. Reidel, Dordrecht (1987).CrossRefGoogle Scholar
  23. 23.
    G. Mamantov and A. I. Popov (eds.). Chemistry of Non-aqueous Solutions: Current Progress. VCH, New York (1994).Google Scholar
  24. 24.
    T. A. O’Donnell. Superacids and Acidic Melts as Inorganic Chemical Reaction Media. VCH, New York (1993).Google Scholar
  25. 25.
    R. A. Laudise. Hydrothermal synthesis of crystals. C&EN 28, 30 (1987).CrossRefGoogle Scholar
  26. 26.
    C. J. Brinker and G. W. Scherer. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic, Boston (1990).Google Scholar
  27. 27.
    O. A. Gzowski. Gels. J. Mater. Educ. 8 (5), 671 (1986).Google Scholar
  28. 28.
    L. L. Hench and J. K. West. Chemical Processing of Advanced Materials. Wiley, New York (1992).Google Scholar
  29. 29.
    R. J. Ayen and P. A. Iacobucci. Metal oxide aerogel preparation by supercritical extraction. Rev. Chem. Engin. 5, 157 (1988).Google Scholar
  30. 30.
    L. C. Klein (ed). Sol-Gel Technology of Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes. Noyes, Park Ridge, NJ (1988).Google Scholar
  31. 31.
    D. L. Smith. Thin Film Deposition. McGraw-Hill, New York (1995).Google Scholar
  32. 32.
    M. G. Hocking and V. Vasantarasree, and P. S. Skidky. Metallic and Ceramic Coatings. Longman, Harlow (1989), Ch. 4.Google Scholar
  33. 33.
    A. C. Jones and P. O’Brien. CVD of Compound Semiconductors. VCH, Weinheim (1997).CrossRefGoogle Scholar
  34. 34.
    D. S. Rickerby and A. Matthews (eds.). Advanced Surface Coatings: A Handbook of Surface Engineering. Blackie, Glasgow (1991).Google Scholar
  35. 35.
    H. K. Pulker, E. Bergmann, and H. M. Gabriel. Wear and Corrosion Resistant Coatings by CVD and PVD. Expert Verlag, Ehningen (1989).Google Scholar
  36. 36.
    M. Langlet and J. C. Joubert. The pyrosol process or the pyrolysis of an ultrasonically generated aerosol. In C.N.R. Rao (ed.). Chemistry of Advanced Materials. Blackwell’s, London (1992), p. 55.Google Scholar
  37. 37.
    S. K. Friedlander. Smoke, Dust, and Haze: Fundamentals of Aerosol Behavior. Wiley, New York (1977).Google Scholar
  38. 38.
    W. C. Hinds. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley Interscience, New York (1982).Google Scholar
  39. 39.
    T. Kodas (ed). Aerosols in materials processing. J. Aerosol Science 24, 273 (1993).Google Scholar
  40. 40.
    S. Veprek. Application of Low Pressure Plasmas in Materials Science—Especially CVD. Current Topics in Materials Science, Vol. IV. E. Kaldis (ed.). North-Holland, Amsterdam (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Paul J. van der Put
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations