Advertisement

Inorganic Morphogenesis

  • Paul J. van der Put

Abstract

Traditionally and conventionally chemistry deals with the elementary composition and structure of molecules and crystal lattices. Books on chemistry sometimes also discuss how to run processes to make those structures, but the importance of secondary and higher structures for properties of solids and polymers is not often acknowledged. The information that impurities, synthesis conditions, grain size and form, and the dimension of surfaces in atomic compounds strongly influence the properties and the chemistry and how that influence can be put to use can only be found in articles and books on materials,1,2 virtually never in chemical descriptions. Materials science deals with complex matter and its function and that is outside the scope of molecular and structural chemistry. Yet as polymer chemists, colloid scientists, and catalyst chemists know, morphology is a branch of chemistry. “In the area of solid-catalyzed reactions it has been well accepted that differences in the fine structure of solid catalysts yield totally different reaction mechanisms and rate expressions even in cases where the chemical compositions of the catalysts are exactly identical.”3 This is a statement from a well-known compilation of catalyzed reactions, and this chapter is an attempt to correct this neglect in textbooks, at least for the case of inorganics, by discussing forms (morphology or microstructure) and how synthesis creates them.

Keywords

Fractal Surface Cellular Automaton Percolation Threshold Boron Carbide Spinodal Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mocellin. An introduction to the morphological characterization of sintered structures. J. Mater. Educ. 4, 211(1982).Google Scholar
  2. 2.
    E. Hornbogen. A systematic description of microstructure. J. Mater. Sci. 21, 3737 (1986).CrossRefGoogle Scholar
  3. 3.
    R. Mezaki and H. Inoue. Rate Equations of Solid-Catalyzed Reactions. University of Tokyo Press, Tokyo (1991).Google Scholar
  4. 4.
    A. Harrison. Fractals in Chemistry. Oxford University Press, Oxford (1995).Google Scholar
  5. 5.
    Ce Wen-Nan. Physics of heterogeneous inorganic materials. Prog. Mater. Sci. 37, 1 (1993).CrossRefGoogle Scholar
  6. 6.
    D. S. McLachlan, M. Blaskiewicz, and R. E. Newnham. Electrical resistivity of solids. J. Am. Ceram. Soc. 73, 2187 (1990).CrossRefGoogle Scholar
  7. 7.
    J. Rouxel, M. Tournoux, and R. Brec. Soft Chemistry Routes to New Materials—Chimie Douce. Trans. Tech Aedermannsdorf (1994).Google Scholar
  8. 8.
    M. Schroeder. Fractals, Chaos, Power Laws. W. H. Freeman, New York (1991).Google Scholar
  9. 9.
    S. K. Scott. Chemical Chaos. International Series of Monographs on Chemistry, Vol. 24. Clarendon, Oxford (1993).Google Scholar
  10. 10.
    N. J. Dudney. Composite electrolytes. In: M. Z. A. Munshi (ed.) Handbook of Solid State Batteries and Capacitors. World Scientific (1995), p. 231.Google Scholar
  11. 11.
    D. Avnir. Fractal geometry—a new approach to heterogeneous catalysis. Chem. Ind. 16, 912 (1991).Google Scholar
  12. 12.
    T. Vicsek, M. Shlesinger, M. Matsushita. Fractals in Natural Sciences. World Scientific, Singapore (1994).Google Scholar
  13. 13.
    F. Family, P. Meakin, B. Sapoval, and R. Wool (eds). Fractal aspects of materials. Mater. Res. Soc. Symp. Proc. 367 (1994). MRS, Pittsburgh.Google Scholar
  14. 14.
    D. W. Schaefer. Fractal models and the structure of materials. Mater. Res. Soc. Bull. p. 22 (Feb. 1988).Google Scholar
  15. 15.
    H. E. Stanley and N. Ostrovsky (eds.). On Growth and Form: Fractal and Non-Fractal Patterns in Physics. Martinus Nijhoff, Dordrecht (1986).Google Scholar
  16. 16.
    H. E. Stanley and N. Ostrovsky (eds.). Random Fluctuations and Pattern Growth: Experiments and Models. Nato ASI Series E, Vol 157. Kluwer, Dordrecht (1988).Google Scholar
  17. 17.
    H. E. Stanley and N. Ostrovsky (eds.). Correlations and Connectivity: Geometric Aspects of Physics, Chemistry, and Biology. Nato ASI Series E, Vol. 188. Kluwer, Dordrecht (1990).Google Scholar
  18. 18.
    P. J. van der Put, R. A. Bauer, A. van den Assem, F. E. Kruis, B. Scarlett, and J. Schoonman. Determination of particle aggregation in ultrafine silicon nitride powders. In: G. L. Messing, S. Hirano, and H. Hausner (eds.). Ceramic Powder Science, Vol. III. American Ceramic Society, Westerville (1990), p. 259.Google Scholar
  19. 19.
    Y. Liu, T. Baudin, and R. Penelle. Simulation of normal grain growth by cellular automata. Scripta Materialia 34, 1679 (1996).CrossRefGoogle Scholar
  20. 20.
    P. Meakin. Fractals and disorderly growth. J. Mater. Educ. 11, 105 (1989).Google Scholar
  21. 21.
    D. Avnir. The Fractal Approach to Heterogeneous Chemistry, Surfaces, Colloids, Polymers. Wiley, Chichester (1989).Google Scholar
  22. 22.
    A. L. Barabasi and H. E. Stanley. Fractal Concepts in Surface Growth. Cambridge University Press (1995).Google Scholar
  23. 23.
    P. J. Reynolds (ed.). On Clusters and Clustering: From Atoms to Fractals. North-Holland, Amsterdam (1993).Google Scholar
  24. 24.
    J. Zarzycki. Fractal Properties of Gels. J. Non-Cryst. Sol. 95/96, 173 (1987).CrossRefGoogle Scholar
  25. 25.
    S. K. Friedlander. Smoke, Dust, and Haze. Wiley, New York (1977).Google Scholar
  26. 26.
    R. Kopelman. Fractal reaction kinetics. Science 241, 1620 (1988).CrossRefGoogle Scholar
  27. 27.
    W. G. Rothschild. Fractals in heterogeneous catalysis. Catal. Rev. Sci. Eng. 33, 71 (1991).CrossRefGoogle Scholar
  28. 28.
    A. Bunde and S. Havlin (eds.). Fractals in Science. Springer-Verlag, Berlin (1994).Google Scholar
  29. 29.
    A. Bunde and S. Havlin (eds.). Fractals and Disordered Systems. Springer-Verlag, Berlin (1991).Google Scholar
  30. 30.
    R. W. Cahn. Percolation frustrated. Nature 389, 121 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Paul J. van der Put
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations