The Chemistry of Inorganic Surfaces

  • Paul J. van der Put


The materials chemist has to deal with three different types of chemistry: solid state (in homogeneous solids), molecular (in homogeneous liquids or gases), and surface. Of these the last is the most important for materials chemistry because1:
  1. 1.

    Solids react with fluids on their surface; catalysis and corrosion are surface reactions of solids.

  2. 2.

    When solid products are made, they grow by surface reactions. Syntheses of crystalline and amorphous solids and of nanostructured materials are surface processes.

  3. 3.

    Many material properties are surface properties, which are easier to tune by modifying the surface than by changing the solid.



Chemical Vapor Deposition Surface Reaction Boron Carbide Sherwood Number Titanium Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Grange and B. Delmon. Interfaces in New Materials. Elsevier, London (1991).CrossRefGoogle Scholar
  2. 2.
    G. A. Somorjai. Introduction to Surface Chemistry and Catalysis. Wiley, New York (1994).Google Scholar
  3. 3.
    G. Ertl. Self-organization in reactions at surfaces. Surf. Sci. 287/288, 1 (1993).CrossRefGoogle Scholar
  4. 4.
    J. Q. Broughton and D. L. Perry. Electron binding energies in the study of adsorption by photoelectron spectroscopy: the reference level problem. Surf. Sci. 74, 307 (1978).CrossRefGoogle Scholar
  5. 5.
    C. G. Vayenas, S. Bebelis, I. V. Yentekakis, and H. G. Lintz. Non-Faradaic electrochemical modification of catalytic activity: a Status Report. Catalysis Today 11, 303 (1992).CrossRefGoogle Scholar
  6. 6.
    J. Lyklema. Interfacial electrochemistry of disperse systems. J. Mater. Educ. 7, 203 (1985).Google Scholar
  7. 7.
    J. T. G. Overbeek. How colloid stability affects the behaviour of suspensions. J. Mater. Educ. 7, 393 (1985).Google Scholar
  8. 8.
    G. C. Bond. Heterogeneous Catalysis: Principles and Applications. Clarendon, Oxford (1987).Google Scholar
  9. 9.
    E. Shustorovich. Chemisorption phenomena: analytical modeling based on perturbation theory and bond-order conservation. Surf Sci. Rep. 6, 1 (1986).CrossRefGoogle Scholar
  10. 10.
    R. Mezaki and H. Inoue. Rate Equations of Solid-Catalyzed Reactions. University of Tokyo Press, Tokyo (1991).Google Scholar
  11. 11.
    M. Boudart and G. Djega-Mariassou. Kinetics of Heterogeneous Catalytic Reactions. Princeton University Press, Princeton (1981).Google Scholar
  12. 12.
    S. T. Ceyer. New mechanisms for chemistry at surfaces. Science 249, 133 (1990).CrossRefGoogle Scholar
  13. 13.
    A. J. Bard. Integrated Chemical Systems: A Chemical Approach to Nanotechnology. Wiley, New York (1994).Google Scholar
  14. 14.
    W. E. Lee and W. M. Rainforth. Ceramic Microstructures: Property Control by Processing. Chapman and Hall, London (1994).Google Scholar
  15. 15.
    A. Pivkina, P. J. van der Put, Yu. Frolov, and J. Schoonman. Reaction-bonded titanium nitride ceramics. J. Eur. Ceram. Soc. 16, 35 (1996).CrossRefGoogle Scholar
  16. 16.
    M. L. Hitchman and K. F. Jensen. Chemical Vapor Deposition: Principles and Applications. Academic, London (1993).Google Scholar
  17. 17.
    H. O. Pierson. Handbook of Chemical Vapor Deposition (CVD): Principles, Technology and Applications. Noyes, Park Ridge, N.J. (1992).Google Scholar
  18. 18.
    C. E. Morosanu. Thin Films by CVD. Elsevier, Amsterdam (1990).Google Scholar
  19. 19.
    W. S. Rees (ed). Chemical Vapor Deposition of Nonmetals. VCH, Weinheim (1996).Google Scholar
  20. 20.
    T. Kodas and M. Hampden-Smith (eds.). The Chemistry of Metal CVD. VCH, Weinheim (1994).Google Scholar
  21. 21.
    F. S. Galasso. Chemical Vapor Deposited Materials. CRC, Boca Raton (1991).Google Scholar
  22. 22.
    J. T. Spencer. CVD of metal-containing thin-film materials from organo-metallic compounds. Progr. Inorg. Chem. 41, 145 (1994).CrossRefGoogle Scholar
  23. 23.
    M. E. Jones and D. W. Shaw. Growth from the vapour. In: N. B. Hannay (ed.). Treatise on Solid State Chemistry: Vol. 5. Changes of State (1975), p. 283. Plenum, New York.Google Scholar
  24. 24.
    K. E. Spear. High-temperature reactivity. In: N. B. Hannay (ed.). Treatise on Solid State Chemistry, Vol. 4. Reactivity of Solids. Plenum, New York (1975), p. 115.Google Scholar
  25. 25.
    P. Glansdorff and I. Prigogine. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley Interscience, London (1977).Google Scholar
  26. 26.
    A. Kato. Some common aspects of the formation of nonoxide powders by the vapor reaction method. In: Materials Science Research, Vol. 17: Emergent Process Methods for High-Technology Ceramics. R. F. Davis, H. Palmour III, and R. L. Porter (eds.). Plenum, New York (1984), p. 123.CrossRefGoogle Scholar
  27. 27.
    P. Gray and S. K. Scott. Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics. Oxford University Press, Oxford (1990).Google Scholar
  28. 28.
    K. Bartsch, A. Leonhardt, E. Wolf. Composition oscillation in hard material layers deposited from the vapour phase. J. de Physique Coll. C2 Suppl. II, Vol. 1. P. 563 Proc. 8th Eur. Conf. CVD, Glasgow 1991.Google Scholar
  29. 29.
    J. P. Dekker, P J. van der Put, H. J. Veringa, and J. Schoonman Particle-precipitation-aided CVD of titanium nitride. J. Am. Ceram. Soc. 80, 629 (1997).CrossRefGoogle Scholar
  30. 30.
    R. J. Fordham (ed.). High-Temperature Corrosion of Technical Ceramics. Elsevier, London (1990).Google Scholar
  31. 31.
    G. V. Samsonov and I. M. Vinitskii. Handbook of Refractory Compounds. IFI/Plenum, New York (1980).CrossRefGoogle Scholar
  32. 32.
    E. P. Plueddemann. Silane Coupling Agents. Plenum, New York (1991).Google Scholar
  33. 33.
    P. Laszlo (ed.). Preparative Chemistry Using Supported Reagents. Academic, San Diego (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Paul J. van der Put
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations