Structural Solid State Chemistry

  • Paul J. van der Put


Solids occur in very diverse crystal structures and a large part of solid state chemistry deals with crystals structures.1–3 Structural chemistry describes the atomic arrangements in solids and some of the consequences of the various structures for their chemical and physical properties. A small selection is given here to illustrate key aspects that are of interest to the materials chemist. The three primary bonding types are represented in the examples and some properties are shown to be the result of structural features.


Intermetallic Compound Curie Temperature Boron Nitride Coercive Force Boron Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Müller. Anorganische Strukturchemie. Teubner, Stuttgart (1991).CrossRefGoogle Scholar
  2. 2.
    F. S. Galasso. Structure and Properties of Inorganic Solids. Pergamon, Oxford (1970).Google Scholar
  3. 3.
    D. M. Adams. Inorganic Solids. Wiley, New York (1974).Google Scholar
  4. 4.
    R. E. Newnham. Structure-Property Relations. Springer-Verlag, Berlin (1975).CrossRefGoogle Scholar
  5. 5.
    G. P. Johari. Introduction to the glassy state in the undergraduate curriculum. J. Chem. Educ. 51, 23 (1974).CrossRefGoogle Scholar
  6. 6.
    M. H. Lewis (ed.). Glasses and Glass Ceramics. Chapman and Hall, London (1989).Google Scholar
  7. 7.
    D. Shechtman and C. I. Lang. Quasi-periodic materials: Discovery and recent developments. Materials Research Society Bulletin, November 1997, p. 46.Google Scholar
  8. 8.
    V. I. Matkovich. Boron and Refractory Borides. Springer-Verlag, Berlin (1977).CrossRefGoogle Scholar
  9. 9.
    H. Holleck. Binare und ternare Carbid-und Nitridsysteme der Ubergangsmetalle. Bornträger, Berlin (1984).Google Scholar
  10. 10.
    J. Robertson. Mechanical properties and structure of diamondlike carbon. Diamond and Related Materials 1, 397 (1992).CrossRefGoogle Scholar
  11. 11.
    J. H. Westbrook and R. L. Fleischer (eds.). Intermetallic Compounds: Principles and Practice. Wiley, Chichester (1995).Google Scholar
  12. 12.
    N. Braithwaite and G. Weaver (eds.). Electronic Materials. Materials in Action Series. The Open University. Butterworths, London (1990).Google Scholar
  13. 13.
    K. Uchino. Applied aspects of piezoelectricity. Key Engineering Materials 66/61, 311 (1992).CrossRefGoogle Scholar
  14. 14.
    J. Unsworth. Piezoelectricity and piezoelectric materials. Key Engineering Materials 66/67, 273 (1992).CrossRefGoogle Scholar
  15. 15.
    N. Stoloff and V. K. Sikka (eds.). Physical Metallurgy and Processing of Intermetallic Compounds. Chapman and Hall, New York (1994).Google Scholar
  16. 16.
    G. Sauthoff. Intermetallics. VCH, Weinheim (1995).CrossRefGoogle Scholar
  17. 17.
    F. E. Fujita (ed.). Physics of New Materials. Springer-Verlag, Berlin (1994).Google Scholar
  18. 18.
    P. W. Atkins. Physical Chemistry. Oxford University Press, Oxford (1982).Google Scholar
  19. 19.
    G. Grimvall. Thermophysical Properties of Materials. North-Holland, Amsterdam (1986).Google Scholar
  20. 20.
    D. P. H. Hasselman. Thermal stress resistance: Parameters for brittle refactory ceramics: a compendium. Cer. Bull. 49, 1033 (1970).Google Scholar
  21. 21.
    C. N. R. Rao and K. J. Rao. Phase Transitions in Solids. McGraw-Hill, New York (1978).Google Scholar
  22. 22.
    R. Roy, D. K. Agrawal, and H. A. McKinstry. Very low thermal expansion coefficient materials. Ann. Rev. Mater. Sci. 19, 59 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Paul J. van der Put
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations