The Chemical Bond

  • Paul J. van der Put


This chapter presents several empirical models for describing the different types of bonding. All of them assign bonding to the behavior of the valence electrons and all of them are consistent with the basic assumptions of quantum mechanics of electrons. Several of the models account for the whole of the bonding energy and others only for part of it or for the structure. There are also models for selected classes of compounds. Finally a draft for a generally valid empirical model is given that includes the others.


Valence Electron Atomic Orbital Valence Bond Ligand Field Chemical Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Linnett. The Electronic Structure of Molecules. A New Approach. Methuen, London (1964).Google Scholar
  2. 2.
    A. R. Miedema, P. F. de Chatel, F. R. de Boer. Cohesion in alloys: Fundamentals of a semi-empirical theory. Physica 100B, 1 (1980).Google Scholar
  3. 3.
    R. G. Pearson. Chemical Hardness. Wiley-VCH, Weinheim (1997).CrossRefGoogle Scholar
  4. 4.
    O. Johnson. An interstitial-electron model for the structure of metals and alloys I-VI. Bull. Chem. Soc. Japan 45, 1599, 1607 (1972); 46, 1919, 1923, 1929, 1935 (1973).CrossRefGoogle Scholar
  5. 5.
    R. G. Wooley. Must a molecule have shape? J. Am. Chem. Soc. 100, 1073 (1978).CrossRefGoogle Scholar
  6. 6.
    S. J. Weininger. The molecular structure conundrum: can classical chemistry be reduced to quantum chemistry? J. Chem. Educ. 61, 939 (1984).CrossRefGoogle Scholar
  7. 7.
    S. S. Zumdahl. Chemistry. Houghton Mifflin, Boston, N.Y. (1997).Google Scholar
  8. 8.
    K. F. Purcell and J. C. Kotz. Inorganic Chemistry. Holt Saunders, Philadelphia (1977).Google Scholar
  9. 9.
    J. K. Burdett. Chemical Bonding in Solids. Oxford University Press, New York (1995).Google Scholar
  10. 10.
    J. F. Ogilvie. The nature of the chemical bond —1990: there are no such things as orbitals. J. Chem. Educ. 67, 280 (1990).CrossRefGoogle Scholar
  11. 11.
    F. J. Pilar. 4s is always above 3d, or how to tell the orbitals from the wavefunctions. J. Chem. Educ. 55, 2 (1978).CrossRefGoogle Scholar
  12. 12.
    T. A. Allbright, J. K. Burdett, and M. H. Whangbo. Orbital Interactions in Chemistry. Wiley, New York (1985).Google Scholar
  13. 13.
    P. A. Cox. The Electronic Structure and Chemistry of Solids. Oxford University Press, Oxford (1981).Google Scholar
  14. 14.
    M. Gerloch. Orbitals, Terms, and States. Wiley, Chichester (1986).Google Scholar
  15. 15.
    R. Hoffmann. Solids and Surfaces: A Chemists View of Bonding in Extended Structures. VCH, Weinheim (1988).Google Scholar
  16. 16.
    N. Cartwright. How the Laws of Physics Lie. Clarendon, Oxford (1983).CrossRefGoogle Scholar
  17. 17.
    R. McWeeny and B. T. Sutcliffe. Methods of Molecular Quantum Mechanics. Academic, London (1969).Google Scholar
  18. 18.
    M. Gerloch and R. C. Slade. Ligand Field Parameters. Cambridge University Press, Cambridge (1973).Google Scholar
  19. 19.
    W. W. Porterfield. Inorganic Chemistry: A United Approach. Academic, San Diego (1993).Google Scholar
  20. 20.
    L. C. Nathan. Prediction of crystal structure based on radius ratio: how reliable are they? J. Chem. Educ. 62, 215 (1985).CrossRefGoogle Scholar
  21. 21.
    O. Muller and R. Roy. The Major Ternary Structure Families. Springer, Berlin (1974).Google Scholar
  22. 22.
    F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen. Cohesion in Metals. Transition Metal Alloys. North-Holland, Amsterdam (1989).Google Scholar
  23. 23.
    R. T. Sanderson. Polar Covalence. Academic, New York (1983).Google Scholar
  24. 24.
    L. Pauling. The Nature of the Chemical Bond. Cornell University Press, Ithaca (1960).Google Scholar
  25. 25.
    K. D. Sen and C. K. Jørgensen (eds). Electronegativity. Springer, Berlin (1987).Google Scholar
  26. 26.
    Y. R. Luo and S. W. Benson. The covalent potential: A simple and useful measure of the valence-state electronegativity for correlating molecular energetics. Acc. Chem. Res. 25, 375 (1992).CrossRefGoogle Scholar
  27. 27.
    W. J. Mortier. Electronegativity equalization, solid state chemistry, and molecular interactions. In: J. B. Moffat (ed). Theoretical Aspects of Heterogeneous Catalysis. Van Nostrand-Reinhold, New York (1990), Ch. 4.Google Scholar
  28. 28.
    E. C. N. Chen and W. E. Wentworth. The experimental values of atomic electron affinities. J. Chem. Educ. 67, 486 (1975).CrossRefGoogle Scholar
  29. 29.
    J. W. Linnett. A modification of the Lewis-Langmuir quartet rule. J. Am. Chem. Soc. 83, 2643 (1961).CrossRefGoogle Scholar
  30. 30.
    R. J. Gillespie. The valence state electron pair repulsion (VSEPR) theory of directed valency. J. Chem. Ed. 40, 295 (1963).CrossRefGoogle Scholar
  31. 31.
    W. F. Luder. The electron repulsion theory of the chemical bond. I: New models of atomic structure, and II: An alternative to resonance hybrids. J. Chem. Educ. 44, 206, 269 (1967).CrossRefGoogle Scholar
  32. 32.
    S. Nordholm, Delocalization: The key concept of covalent bonding. J. Chem. Educ. 65, 581 (1988).CrossRefGoogle Scholar
  33. 33.
    M. H. McAdon and W. A. Goddard III. New concepts of metallic bonding based on valence-bond ideas. Phys. Rev. Lett. 55, 2563 (1985).CrossRefGoogle Scholar
  34. 34.
    B. Silvi and A. Savin. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683 (1994).CrossRefGoogle Scholar
  35. 35.
    O. Sugino and H. Kamimura. Localized-orbital Hartree-Fock description of alkali-metal clusters. Phys. Rev. Lett. 65, 2696 (1990).CrossRefGoogle Scholar
  36. 36.
    P. J. Feibelman and J. Harris. Surmounting the barriers. Nature 372, 135 (1994).CrossRefGoogle Scholar
  37. 37.
    J. J. Gilman. Why covalent ceramics are hard. Mater. Res. Soc. Sympos. Proc. 327, 135 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Paul J. van der Put
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations