Advertisement

Tail-Assisted Hind Limb Suspension as a Transitional Behavior in the Evolution of the Platyrrhine Prehensile Tail

  • D. Jeffrey Meldrum

Abstract

The atelines (Ateles, Lagothrix, Brachyteles, and Alouatta) are distinguished among the New World primates by the presence of a prehensile tail, equipped with a naked volar pad covered with dermatoglyphic friction skin (Geoffroy Saint-Hilaire, 1829). This adaptation plays a significant role in the definition of the feeding and locomotor niche of the atelines (Rosenberger and Strier, 1989). Atelines exhibit modifications of the sacral and caudal vertebrae (Ankel, 1972; German, 1982), caudal musculature (Lemelin, 1995) and cerebral cortical representation of the tail (Falk, 1980). The capuchin monkey (Cebus) also displays prehensile abilities in its relatively shorter tail, but lacks the volar pad and other distinctive caudal morphologies present in the atelines, suggesting prehensile tails evolved in parallel in Cebus and the atelines (Rosenberger, 1983; Lemelin, 1995).

Keywords

World Monkey Positional Behavior Locomotor Behavior Spider Monkey Support Body Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen JA (1925) Primates collected by the American Museum Congo expedition. Bull. Am. Mus. Nat. Hist. 47:283–499.Google Scholar
  2. Ankel F (1962) Vergleichende Untersuchungen ueber die Skelettmorphologie des Greifschwanzes sudamerikanischer affen (Platyrrhina). Z. Morph. Oekol. Tiere 52:131–170.CrossRefGoogle Scholar
  3. Ankel F (1963) Zur Morphologie des Greifschwanzes bei suedamerikanishen Affen. Z. Morph. Anthropol. 53:12–18.Google Scholar
  4. Ankel F (1972) Vertebral morphology of fossil and extant primates. In RH Turtle (ed.): Functional and Evolutionary Biology of Primates. Chicago: Aldine Press, pp. 223–240.Google Scholar
  5. Bergeson DJ (1996) Positional behavior and prehensile tail use of Alouatta palliata, Ateles geoffroyi and Cebus capucinus. Ph.D. Dissertation, Washington University.Google Scholar
  6. Cant JGH (1977) Ecology, locomotion and social organization of spider monkeys (Ateles geoffroyi). Ph.D. Dissertation, University of California, Davis.Google Scholar
  7. Cant JGH (1986) Locomotion and feeding postures of spider and howling monkeys: Field study and evolutionary interpretation. Folia Primatol. 46:1–14.PubMedCrossRefGoogle Scholar
  8. Carpenter CR, and Durham NM (1969) A preliminary description of suspensory behavior in primates. In HO Hofer (ed.): Recent Advances in Primatology. Proc. 2nd Intl. Congr. Primatol. 2:147-154.Google Scholar
  9. Christoffer C (1987) Body size differences between New World and Old World, arboreal tropical vertebrates: Cause and consequences. J. Biogeography. 14:165–172.CrossRefGoogle Scholar
  10. Dandelot P (1956) Note sur le comportment de deux Cercopitheques de l’Hoest en captivité. Mammalia 20:330–331.Google Scholar
  11. Elliot DG (1913) A Review of the Primates. Vol II. New York: American Museum of Natural History.Google Scholar
  12. Emmons LH, and Gentry AH (1983) Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. Am. Nat. 121:513–524.CrossRefGoogle Scholar
  13. Falk D (1980) Comparative study of the endocranial casts of New and Old World monkeys. In RL Ciochon and AB Chiarelli (eds.): Evolutionary Biology of the New World Monkeys and Continental Drift. New York: Plenum Press, pp. 275–292.CrossRefGoogle Scholar
  14. Fleagle JG, and Meldrum DJ (1988) Locomotor behavior and skeletal morphology of two sympatric pitheciine monkeys, Pithecia pithecia and Chiropotes satanus. Am. J. Primatol. 16:227–249.CrossRefGoogle Scholar
  15. Fleagle JG, and Mittermier RA (1980) Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. Am. J. Phys. Anthropol. 52:301–314.CrossRefGoogle Scholar
  16. Fontaine R (1990) Positional behavior in Saimiri boliviensis and Ateles geoffroyi. Am. J. Phys. Anthropol. 82:485–508.PubMedCrossRefGoogle Scholar
  17. Geoffroy Saint-Hilaire I (1829) Remarques sur les caracteres generaux singes americains, et descrition d’un genre nouveau, sous le nom d’Eriode. Mem. Mus. Hist. Nat. (Paris) 17:121–165.Google Scholar
  18. German RZ (1982) The functional morphology of caudal vertebrae in New World monkeys. Am. J. Phys. Anthropol. 58:453–459.PubMedCrossRefGoogle Scholar
  19. Grand TI (1972) A mechanical interpretation of terminal branch feeding. J. Mammal. 53:198–201.CrossRefGoogle Scholar
  20. Grand TI (1978) Adaptations of tissue and limb segments to facilitate moving and feeding in arboreal folivores. In GG Montgomery (ed.): The Ecology of Arboreal Folivores. Washington, DC: Smithsonian Institution Press, pp. 231–242.Google Scholar
  21. Grand TI (1984) Motion economy within the canopy: Four strategies for mobility. In PS Rodman and JGH Cant (eds.): Adaptations for Foraging in Nonhuman Primates. New York: Columbia University Press, pp. 54–72.Google Scholar
  22. Haddow AJ (1952) Field and Laboratory studies on an African monkey, Cercopithecus ascanias schmidti Matschie. Proc. Zool. Soc. Lond. 122:297–394.Google Scholar
  23. Jenkins FA Jr, and McLearn D (1984) Mechanisms of hind foot reversal in climbing mammals. J. Morph. 182:197–219.CrossRefGoogle Scholar
  24. Jones C, and Sabater Pi J (1968) Comparative ecology of Cercocebus albigena (Gray) and Cercocebus torquatus (Kerr) in Rio Muni, West Africa. Folia Primatol. 9:99–113.PubMedCrossRefGoogle Scholar
  25. Lemelin P (1995) Comparative and functional myology of the prehensile tail in New World monkeys. J. Morph. 224:351–368.PubMedCrossRefGoogle Scholar
  26. McKechnie JL, ed. (1983) Webster’s New Universal Unabridged Dictionary, 2nd Edition. New York: Simon and Schuster.Google Scholar
  27. Meldrum DJ (1989) Terrestrial adaptations in the feet of African cercopithecines. Ph.D. Dissertation, State University of New York at Stony Brook.Google Scholar
  28. Meldrum DJ, and Lemelin P (1991) Axial skeleton of Cebupithecia sarmientoi (Pitheciinae, Platyrrhini) from the middle Miocene of La Venta, Colombia. Am. J. Primatol. 25:69–89.CrossRefGoogle Scholar
  29. Meldrum DJ, Dagosto M, and White J (1997) Hindlimb suspension and foot reversal: An adaptation for increased feeding kinesphere in primates and other arboreal mammals. Am. J. Phys. Anthropol. 102:85–102.CrossRefGoogle Scholar
  30. Mendel F (1976) Postural and locomotor behavior of Alouatta palliata on various substrates. Folia Primatol. 36:1–19.Google Scholar
  31. Mittermeier RA (1977) Distribution, synecology and conservation of Surinam monkeys. Ph.D. Dissertation, Harvard University.Google Scholar
  32. Mittermeier RA (1978) Locomotion and posture in Ateles geoffroyi and Ateles paniscus. Folia Primatol. 30:161–193.PubMedCrossRefGoogle Scholar
  33. Napier JR, and Napier PH (1967) A Handbook of Living Primates. New York: Academic Press.Google Scholar
  34. Norconk MA, and Kinzey WG (1994) Challenge of neotropical frugivory: Travel patterns of spider monkeys and bearded sakis. Am. J. Primtol. 34:171–183.CrossRefGoogle Scholar
  35. Rollinson J (1975) Interspecific comparisons of locomotor behavior and prehension in eight species of African forest monkey: A functional and evolutionary study. Ph.D. Dissertation, University of London.Google Scholar
  36. Rose MD (1974) Postural adaptations in New and Old World monkeys. In FA Jenkins Jr (ed.): Primate Locomotion. New York: Academic Press, pp. 201–222.Google Scholar
  37. Rosenberger AL (1983) Tale of tails: Parallelism and prehensility. Am. J. Phys. Anthropol. 60:103–107.PubMedCrossRefGoogle Scholar
  38. Rosenberger AL, and Strier KB (1989) Adaptive radiation of the ateline primates. J. Hum. Evol. 18:717–750.CrossRefGoogle Scholar
  39. Rosenblum LA, and Cooper RW, eds. (1969) The Squirrel Monkey. New York: Academic Press.Google Scholar
  40. Schön Ybarra MA (1984) Locomotion and postures of red howlers in a deciduous forest-savanna interface. Am. J. Phys. Anthropol. 63:65–76.PubMedCrossRefGoogle Scholar
  41. Tappen N (1960) Problems of distribution and adaptation of the African monkeys. Curr. Anthropol. 1:91–120.CrossRefGoogle Scholar
  42. van Roosmalen MGM, Mittermeier RA, and Milton K (1981) The bearded sakis, genus Chiropotes. In AF Coimbra-Filho and RA Mittermeier (eds.): Ecology and Behavior of Neotropical Primates, Vol. 1. Rio de Janeiro: Academia Brasileira de Ciencias, pp. 419–441.Google Scholar
  43. Walker SE (1994) Positional behavior and habitat use in Chiropotes satanas and Pithecia pithecia. In B Thierry, JR Anderson, JJ Roeder, and N Herrenschmidt (eds.): Current Primatology, Vol. 1: Ecology and Evolution. Proc. XIV IPS Congress. Strasbourg: Universitè Louis Pasteur, pp. 195–201.Google Scholar
  44. Walker SE (1996) The evolution of positional behavior in the saki/uakaris (Pithecia, Chiropotes and Cacajao). In M Norconk, A Rosenberger, and P Garber (eds.): Advances in Primatology: Adaptive Radiations of Neotropical Primates. New York: Plenum, pp. 335–363.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • D. Jeffrey Meldrum
    • 1
  1. 1.Departments of Biological Sciences and AnthropologyIdaho State UniversityPocatelloUSA

Personalised recommendations