Grasping Performance in Saguinus midas and the Evolution of Hand Prehensility in Primates

  • Pierre Lemelin
  • Brian W. Grafton


The Order Primates is characterized by a unique suite of cranial and postcranial features that may have evolved for visual predation on insects or exploitation of fruits in a small-branch milieu [see Cartmill (1992) for recent review]. Compared to more generalized mammals like tree shrews, primates possess a relatively larger brain with a more developed visual area and more reduced olfactory bulbs, orbits that are more approximated and more convergent with one another, and grasping hands and feet that bear nails instead of claws (Cartmill, 1970, 1972, 1974a,b, 1992; Le Gros Clark, 1959, 1963; Martin, 1986; Wood Jones, 1916).


Squirrel Monkey Tree Shrew Food Object Glabrous Skin Nonprimate Mammal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allman J (1977) Evolution of the visual system in the early primates. In JM Sprague, and AN Epstein (eds.): Progress in Psychobiology and Physiological Psychology. Vol. 7. New York: Academic Press, pp. 1–53.Google Scholar
  2. Bishop A (1964) Use of the hand in lower primates. In J Buettner Janusch (ed.): Evolutionary and Genetic Biology of Primates, Vol. 2. New York: Academic Press, pp. 133–225.CrossRefGoogle Scholar
  3. Cartmill M (1970) The orbits of arboreal mammals: A reassessment of the arboreal theory of primate evolution. Ph.D. Dissertation, University of Chicago.Google Scholar
  4. Cartmill M (1972) Arboreal adaptations and the origin of the order Primates. In RH Tuttle (ed.): The Functional and Evolutionary Biology of Primates. Chicago: Aldine-Atheton, pp. 3–35.Google Scholar
  5. Cartmill M (1974a) Pads and claws in arboreal locomotion. In FA Jenkins (ed.): Primate Locomotion. New York: Academic Press, pp. 45–83.Google Scholar
  6. Cartmill M (1974b) Rethinking primate origins. Science 184:436–443.PubMedCrossRefGoogle Scholar
  7. Cartmill M (1992) New views on primate origins. Evol. Anthropol. 1:105–111.CrossRefGoogle Scholar
  8. Cauna N (1956) Nerve supply and nerve endings in Meissner’s corpuscles. Am. J. Anat. 99:315–350.PubMedCrossRefGoogle Scholar
  9. Charles-Dominique P, Atramentowicz M, Charles-Dominique M, Gérard H, Hladik A, Hladik CM, and Prévost MF (1981) Les mammifères frugivores arboricoles nocturnes d’une forêt guyanaise: Inter-relations plantesanimaux. Rev. Ecol. (Terre Vie) 35:341–435.Google Scholar
  10. Costello MB, and Fragaszy DM (1988) Prehension in Cebus and Saimiri: I. Grip type and hand preference. Am. J. Primatol. 15:235–245.CrossRefGoogle Scholar
  11. Ford SM (1980) Callitrichids as phyletic dwarfs, and the place of the Callitrichidae in Platyrrhini. Primates 21:31–43.CrossRefGoogle Scholar
  12. Fleagle JG, and Mittermeier RA (1980) Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. Am. J. Phys. Anthropol. 52:301–314.CrossRefGoogle Scholar
  13. Garber PA (1980) Locomotor behavior and feeding ecology of the Panamanian tamarin (Saguinus oedipus geoffroyi, Callitrichidae, Primates). Int. J. Primatol. 1:185–201.CrossRefGoogle Scholar
  14. Garber PA (1984) Use of habitat and positional behavior in a neotropical primate, Saguinus oedipus. In P Rodman and JGH Cant (eds.): Adaptations for Foraging in Nonhuman Primates. New York: Columbia University Press, pp. 112–133.Google Scholar
  15. Garber PA (1988) Diet, foraging patterns, and resource defense in a mixed species troop of Saguinus mystax and Saguinus fuscicollis in Amazonian Peru. Behaviour 105:18–34.CrossRefGoogle Scholar
  16. Garber PA (1992) Vertical clinging, small body size, and the evolution of feeding adaptations in the Callitrichinae. Am. J. Phys. Anthropol. 88:469–482.PubMedCrossRefGoogle Scholar
  17. Garber PA (1993) Feeding ecology and behaviour of the genus Saguinus. In AB Rylands (ed.): Marmosets and Tamarins. Oxford: Oxford University Press, pp. 273–295.Google Scholar
  18. Garber PA, and Sussman RW (1984) Ecological distinctions between sympatric species of Saguinus and Sciurus. Am. J. Phys. Anthropol. 65:135–146.PubMedCrossRefGoogle Scholar
  19. Hall WC, Kaas JH, Killackey H, and Diamond IT (1971) Cortical visual areas in the grey squirrel (Sciurus carolinensis): A correlation between cortical evoked potential maps and architectonic subdivisions. J. Neurophysiol. 34:437–452.PubMedGoogle Scholar
  20. Hershkovitz P (1970) Notes on Tertiary platyrrhine monkeys and a description of a new genus from the late Miocene of Columbia. Folia Primatol. 12:1–37.PubMedCrossRefGoogle Scholar
  21. Hershkovitz P (1977) Living New World Monkeys (Platyrrhini), Vol. 1. Chicago: The University of Chicago Press.Google Scholar
  22. Idé C (1976) The fine structure of the digital corpuscle of the mouse toe pad, with special reference to nerve fibers. Am. J. Anat. 147:329–356.PubMedCrossRefGoogle Scholar
  23. Johansson RS (1978) Tactile sensibility in the human hand: Receptive field characteristics of mechanoreceptive units in the glabrous skin area. J. Physiol. (London) 281:101–123.Google Scholar
  24. Johansson RS (1979) Tactile afferent units with small and well demarcated receptive fields in the glabrous skin area of the human hand. In DR Kenshalo (ed.): Sensory Functions of the Skin of Humans. New York: Plenum Press, pp. 129–145.CrossRefGoogle Scholar
  25. Johansson RS, and Vallbo AB (1976) Skin mechanoreceptors in the human hand. An inference of some population properties. In Y Zotterman (ed.): Sensory Functions of the Skin in Primates. Oxford: Pergamon Press, pp. 171–184.Google Scholar
  26. Johansson RS, and Vallbo ÅB (1979) Tactile sensibility in the human hand: Relative and absolute densities of four types of mechanoreceptive units in the glabrous skin area. J. Physiol. (London) 286:283–300.Google Scholar
  27. Jouffroy FK, Godinot M, and Nakano Y (1991) Biometrical characteristics of primate hands. Hum. Evol. 6:269–306.CrossRefGoogle Scholar
  28. Kaas JH, Hall WC, and Diamond IT (1972) Visual cortex of the grey squirrel (Sciurus carolinensis): Architectonic subdivisions and connections from the visual thalamus. J. Comp. Neurol. 145:273–305.PubMedCrossRefGoogle Scholar
  29. Koprowski JL (1994) Sciurus carolinensis. Mammal. Species 480:1–9.Google Scholar
  30. Krause W (1860) Die terminalen Köperchen der einfach sensiblen Nerven. Hanover: Hahn.Google Scholar
  31. Le Gros Clark WE (1959) The Antecedents of Man. Edinburgh: Edinburgh University Press.Google Scholar
  32. Le Gros Clark WE (1963) History of the Primates. An Introduction to the Study of Fossil Man. 4th ed. Chicago: The University of Chicago Press.Google Scholar
  33. Lemelin P (1996a) Relationships between hand morphology and feeding strategies in small-bodied prosimians. Am. J. Phys. Anthropol. Suppl. 22:148 (abstract).Google Scholar
  34. Lemelin P (1996b) The Evolution of Manual Prehensility in Primates: A Comparative Study of Prosimians and Didelphid Marsupials. Ph.D. Dissertation, State University of New York at Stony Brook.Google Scholar
  35. Martin RD (1986) Primates: A definition. In B Wood, L Martin, and P Andrews (eds.): Major Topics in Primate and Human Evolution. Cambridge: Cambridge University Press, pp. 1–31.Google Scholar
  36. McClearn D (1992) Locomotion, posture, and feeding of kinkajous, coatis, and raccoons. J. Mamm. 73:245–261.CrossRefGoogle Scholar
  37. Mittermeier RA, and van Roosmalen MGM (1981) Preliminary observations on habitat utilization and diet in eight Surinam monkeys. Folia Primatol. 36:1–39.PubMedCrossRefGoogle Scholar
  38. Munger BL, and Idé C (1988) The structure and function of cutaneous sensory receptors. Arch. Histol. Cytol. 51:1–34.PubMedCrossRefGoogle Scholar
  39. Napier JR (1956) The prehensile movements of the human hand. J. Bone Jt. Surg. 38B:902–913.Google Scholar
  40. Napier JR (1961) Prehensility and opposability in the hands of primates. Symp. Zool. Soc. Lond. 5:115–132.Google Scholar
  41. Napier JR (1993) Hands (Revised ed.). Princeton: Princeton University Press.Google Scholar
  42. Nelson H, Jurmain R, and Kilgore L (1992) Essentials of Physical Anthropology. St. Paul: West Publishing Co.Google Scholar
  43. Niemitz C (1984) Synecological relationships and feeding behavior of the genus Tarsius. In C Niemitz (ed.): Biology of Tarsiers. Stuttgart: Gustav Fischer Verlag, pp. 59–76.Google Scholar
  44. Polyak S (1957) The Vertebrate Visual System. Chicago: The University of Chicago Press.Google Scholar
  45. Quilliam TA, and Ridley A (1971) The human Meissner corpuscle. J. Anat. 109:338–339 (abstract).Google Scholar
  46. Rasmussen DT (1990) Primate origins: Lessons from a neotropical marsupial. Am. J. Primatol. 22:263–277.CrossRefGoogle Scholar
  47. Rosenberger AL (1977) Xenothrix and ceboid phylogeny. J. Hum. Evol. 6:461–481.CrossRefGoogle Scholar
  48. Ross C (1995) Allometric and functional influences on primate orbit orientation and the origins of the Anthropoidea. J. Hum. Evol. 29:201–227.CrossRefGoogle Scholar
  49. Ross C (1996) Adaptive explanation for the origins of the Anthropoidea (Primates). Am. J. Primatol. 40:205–230.CrossRefGoogle Scholar
  50. Rothe H (1971) Some remarks on the spontaneous use of the hand in the common marmoset (Callithrix jacchus). Proc. 3rd Int. Congr. Primat., Zürich (1970) 3:136-141. Basel: Karger.Google Scholar
  51. Rylands AB (1989) Sympatric Brazilian callitrichids: The black tufted-ear marmoset, Callithrix kuhli, and the golden-headed lion tamarin, Leontopithecus chrysomelas. J. Hum. Evol. 18:679–695.CrossRefGoogle Scholar
  52. Servos P, Goodale MA, and Jakobson LS (1992) The role of binocular vision in prehension: A kinematic analysis. Vision Res. 32:1513–1521.PubMedCrossRefGoogle Scholar
  53. Snowdon CT, and Soini P (1988) The tamarins, genus Saguinus. In RA Mittermeier, AB Rylands, A Coimbra-Filho, and GAB Fonseca (eds.): Ecology and Behavior of Neotropical Primates, Vol. 2. Washington, D.C.: World Wildlife Fund, pp. 223–298.Google Scholar
  54. Soini P (1987) Ecology of the saddle-back tamarin Saguinus fuscicollis illigeri on the Rio Pacaya, northeastern Peru. Folia Primatol. 39:11–32.CrossRefGoogle Scholar
  55. Sussman RW, and Kinzey WG (1984) The ecological role of the Callitrichidae: A review. Am. J. Phys. Anthropol. 64:419–449.PubMedCrossRefGoogle Scholar
  56. Terborgh J (1983) Five New World Primates. Princeton: Princeton University Press.Google Scholar
  57. Thorington RW, Jr. (1968) Observations of the tamarin Saguinus midas. Folia Primatol. 9:95–98.PubMedCrossRefGoogle Scholar
  58. Thorndike EE (1968) A microscopic study of the marmoset claw and nail. Am. J. Phys. Anthropol. 28:247–262.PubMedCrossRefGoogle Scholar
  59. Vallbo ÅB and Johansson RS (1978) Tactile sensory innervation of the glabrous skin of the human hand. In G Gordon (ed.): Active Touch: The Mechanism of Recognition of Objects by Manipulation. Oxford: Pergamon Press, pp. 29–54.Google Scholar
  60. Winkelmann RK (1963) Nerve ending in the skin of primates. In J Buettner Janusch (ed.): Evolutionary and Genetic Biology of Primates, Vol. 11. New York: Academic Press, pp. 229–259.CrossRefGoogle Scholar
  61. Winkelmann RK (1964) Nerve endings of the North American opossum (Didelphis virginiana): A comparison with nerve endings of primates. Am. J. Phys. Anthropol. 22:253–258.PubMedCrossRefGoogle Scholar
  62. Winkelmann RK (1965) Innervation of the skin: Notes on a comparison of primate and marsupial nerve endings. In AG Lyne and BF Short (eds.): Biology of the Skin and Hair Growth. New York: American Elsevier, pp. 171–182.Google Scholar
  63. Wood Jones F (1916) Arboreal Man. London: Edward Arnold.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Pierre Lemelin
    • 1
  • Brian W. Grafton
    • 2
  1. 1.Department of AnatomyNortheastern Ohio Universities College of MedicineRootstownUSA
  2. 2.School of Biomedical Sciences, Division of Biological AnthropologyKent State UniversityKentUSA

Personalised recommendations