Advertisement

Evaluation of the Placenta: Suggestions for a Greater Role in Developmental Toxicology

  • F. Maranghi
  • C. Macrì
  • C. Ricciardi
  • A. V. Stazi
  • A. Mantovani
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 444)

Abstract

Both in human and in rat, two types of placenta are present: the yolk sac (YS) and the chorioallantoic placenta. Histiotrophy, α-fetoprotein synthesis and blood cell formation occur in YS of both species. Besides, the midgut, primordial germ cells and possibly immunological structures originate from the YS tissue. The specialised cells of the chorioallantoic placenta attach the embryo to the uterus and form the vascular connections necessary for the nutrient transport. The placenta redirects maternal endocrine, immune and metabolic functions to conceptus advantage. These complex activities are sensitive to direct toxicity. Indirect effects on the placental functions might be elicited by immunomodulators and endocrine disrupters. Some experimental models could be utilised to identify possible toxic effects on placenta. Among the in vitro models the rodent giant yolk sac colture may be used to study the transport of materials, morphological and/or biochemical alterations and biotrasformation activity of the visceral YS epithelium. Other in vitro approaches utilise human derived trophoblastic cells and tissues to investigate implantation and perimplantation toxicology. Besides specific studies, in vivo reproductive toxicity tests could pay more attention to the evaluation of placental tissues. Nowadays, some physiologically based pharmacokinetic models for developmental toxicity are also available to describe the disposition of toxic substances and their metabolites during pregnancy in rodents. Thus, more detailed studies on the embryo-foetal placenta may provide an important tool to understand developmental toxicity mechanisms, with particular regard to embryolethality and delayed development.

Keywords

Primordial Germ Cell Complete Hydatidiform Mole Blood Cell Formation Chorioallantoic Placenta Endometrial Explants 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambroso J.L., Larsen S.V., Brabec R.K. and Harris C., 1997, Fluorometric analysis of endocytosis and lysosomal proteolysis in the rat visceral yolk sac during whole embryo culture. Teratology 56: 201–209.PubMedCrossRefGoogle Scholar
  2. Baines M.G., Duclos A.J., Antecka E. and Haddad E.K., 1997, Decidual infiltration and activation of macrophages leads to early embryo loss. A. J. R. I. 37: 471–77.Google Scholar
  3. Beckman D.A., Koszalka T.R., Jensen M. and Brent R.L., 1990, Experimental manipulation of the rodent visceral yolk sac. Teratology 41: 395–404.PubMedCrossRefGoogle Scholar
  4. Chapin R.E, Stevens J.T., Hughes C.L., Kelce W.R., Hess R.A. and Daston G.P., 1996, Endocrine modulation of reproduction. Fundam. Appl. Toxicol. 29: 1–17.PubMedCrossRefGoogle Scholar
  5. Chen B. and Hales B.F., 1994, Cadmium-induced rat embryotoxicity in vitro is associated with an increased abundance of E-cadherin in protein in the yolk sac. Toxicol. Appl. Pharmacol. 128: 293–301.PubMedCrossRefGoogle Scholar
  6. Cross J.C., Werb Z., Fisher S.J., 1994, Implantation and the placenta: key pieces of the development puzzle. Science 266: 1508–1518.PubMedCrossRefGoogle Scholar
  7. Dunton A., Al-Alousi L.A., Pratten M.K. and Beck F., 1986, The giant yolk sac: a model for studying early placental transport. J. Anat. 145: 189–206.PubMedGoogle Scholar
  8. Freeman S.J. and Brown N.A., 1994, Inhibition of yolk sac function in late gastrulation rat conceptuses as a cause of teratogenesis: an in vivo/in vitro study. Repr. Toxicol. 8: 2137–143.Google Scholar
  9. Garbis-Berkvens J.M. and Peters W.J., 1987, Comparative morphology and physiology of embryonic and fetal membranes, in: Pharmacokinetics in Teratogenesis, H. Nau and W.J. Scott, ed., vol. I, CRC Press, Boca Raton, Florida.Google Scholar
  10. Genbacev O., White T.E.K., Gavin C.E. and Miller R.K., 1993, Human trophoblast cultures: models for implantation and peri-implantation toxicology. Repr. Toxicol. 7: 75–94.CrossRefGoogle Scholar
  11. Jaskoll T., Choy H.A., Chen H. and Melnick M., 1996, Developmental expression and CORT-regulation of TGF-β, and EGF receptor mRNA during mouse palatal morphogenesis: correlation between CORT-induced cleft palate and TGF-β2 mRNA expression. Teratology 54: 34–44.PubMedCrossRefGoogle Scholar
  12. Jauniaux E., Gulbis B., Schandene L., Collette J., Hustin J., 1996, Distribution of interleukine-6 in maternal and embryonic tissues during the first trimester. Mol. Hum. Reprod. 2: 4239–43.CrossRefGoogle Scholar
  13. Johansson S., Gustafson A.L., Donovan M., Romert A., Eriksson U., Dencker L., 1997, Retinoid binding proteins in mouse yolk sac and chorio-allantoic placentas. Anat. Embryol. Berl. 195: 6483–90.CrossRefGoogle Scholar
  14. Jollie W.P., 1990, Development, morphology and function of the yolk-sac placenta of laboratory rodents. Teratology 41: 361–381.PubMedCrossRefGoogle Scholar
  15. Mahendroo M.S., Cala K.M., Landrum D.P., Russell D.W., 1997, Fetal death in mice lacking 5alpha-reductase type 1 caused by estrogen excess. Mol. Endocrinol 11: 7917–27.CrossRefGoogle Scholar
  16. Omigbodun A., Ziolkiewicz P., Tessler C., Hoyer J.R, Coutifaris C., 1997, Progesterone regulates osteopontin expression in human trophoblasts: a model of paracrine control in the placenta? Endocrinology 138: 104308–15.CrossRefGoogle Scholar
  17. Pratten M.K. and Lloyd J.B., 1997, Uptake of microparticles by rat visceral yolk sac. Placenta 18: 7547–52.CrossRefGoogle Scholar
  18. Roulier S., Rochette-Egly C., Rebut-Bonneton C., Porquet D., Evain-Brion D., 1994, Nuclear retinoic acid receptor characterisation in cultured human trophoblast cells: effect of retinoic acid on epidermal growth factor receptor expression. Mol Cell Endocrinol 105: 165–173.PubMedCrossRefGoogle Scholar
  19. Takacs P. and Kauma S., 1996, The expression of interleukin-1α, interleukin-1β, and interleukin-1 receptor type I mRNA during preimplantation mouse development, receptor type I mRNA during preimplantation mouse development. J. Repr. Immunol 32: 27–35.CrossRefGoogle Scholar
  20. Terry K.K., Elswick B.A., Welsch F. and Conolly R.B., 1995, Development of a physiologically based pharmacokinetic model describing 2-metoxyacetic acid disposition in the pregnant mouse. Toxicol Appl. Pharmacol. 132: 103–114.PubMedCrossRefGoogle Scholar
  21. Tiboni G.M. and Bellati U., 1996, Potential involvement of yolk sac in teratogenesis. Europ. J. Obstet. Gynecol. Reprod. Biol. 66: 201.CrossRefGoogle Scholar
  22. Zaragoza M.V., Keep D., Genest D.R., Hassold T. and Redline R.W., 1997, Early complete hydatidiform moles contain inner cell mass derivatives. Am. J. Med. Genet. 70: 273–277.PubMedCrossRefGoogle Scholar
  23. Zhu X.D., Bonet B., Knopp R.H., 1997, 17beta-Estradiol, progesterone and testosterone inversely modulate low-density lipoprotein oxidation and cytotoxicity in cultured placental trophoblast and macrophges. Am. J. Obstet. Gynecol. 177: 1196–209.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • F. Maranghi
    • 1
  • C. Macrì
    • 1
  • C. Ricciardi
    • 1
  • A. V. Stazi
    • 1
  • A. Mantovani
    • 1
  1. 1.Laboratory of Comparative Toxicology and EcotoxicologyIstituto Superiore di SanitàRomeItaly

Personalised recommendations