Dynamics of the Micromaser Field

  • G. Raithel
  • O. Benson
  • H. Walther
Part of the NATO ASI Series book series (NSSB, volume 358)


In this contribution a cavity-QED system is investigated in which single atoms interact with a single mode of a high-Q microwave cavity. One can distinguish between two limiting cases of resonantly interacting atom-field systems. In one of those regimes, the perturbative regime, the photon storage time τcav of the cavity device is much shorter than the decay time of the excited atoms in the cavity field. This is the usual experimental situation when considering the interaction between single atoms and quantized electromagnetic fields. Important observations on perturbative cavity-QED systems include enhanced1 or inhibited2 spontaneous decay of the atoms, as well as radiative shifts of the atomic energy levels3,4,5.


Photon Number Rydberg Atom Cavity Field Maser Field Photon Number Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Goy, J. M. Raimond, M. Gross and S. Haroche, Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett. 50: 1903 (1983).CrossRefGoogle Scholar
  2. 2.
    R. G. Hulet, E. S. Hilfer and D. Kleppner, Inhibited spontaneous emission by a Rydberg atom, Phys. Rev. Lett. 55: 2137 (1985).CrossRefGoogle Scholar
  3. 3.
    D. J. Heinzen and M. S. Feld, Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator, Phys. Rev. Lett. 59: 2623 (1987).CrossRefGoogle Scholar
  4. 4.
    G. Barton, Quantum-electrodynamic level shifts between parallel mirrors: analysis, Proc. Roy. Soc. Lond. A 410: 141 (1987).Google Scholar
  5. 5.
    G. Barton, Quantum-electrodynamic level shifts between parallel mirrors: applications, mainly to Rydberg states, Proc. Roy. Soc. Lond A 410: 175 (1987).Google Scholar
  6. 6.
    D. Meschede, H. Walther and G. Müller, One-atom maser, Phys. Rev. Lett 54: 551 (1985).CrossRefGoogle Scholar
  7. 7.
    G. Rempe, H. Walther and N. Klein, Observation of quantum collapse and revival in a one-atom maser, Phys. Rev. Lett. 58: 353 (1987).CrossRefGoogle Scholar
  8. 8.
    G. Rempe, F. Schmidt-Kaler, and H. Walther, Observation of sub-Poissonian photon statistics in a micromaser, Phys. Rev. Lett. 64: 2783 (1990).CrossRefGoogle Scholar
  9. 9.
    J. H. Eberly, N. B. Narozhny and J. J. Sanchez-Mondragon, Periodic spontaneous collapse and revival in a simple quantum model, Phys. Rev. Lett. 44: 1323 (1980).MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Filipowicz, J. Javanainen and P. Meystre, Theory of a microscopic maser, Phys. Rev. A 34: 3077 (1986).Google Scholar
  11. 11.
    L. A. Lugiato, M. O. Scully and H. Walther, Connection between microscopic and macroscopic maser theory, Phys. Rev. A 36: 740 (1987).Google Scholar
  12. 12.
    G. Rempe and H. Walther, Sub-Poissonian atomic statistics in a micromaser, Phys. Rev. A 42: 1650 (1990).Google Scholar
  13. 13.
    O. Benson, G. Raithel and H. Walther, Quantum jumps of the micromaser field: dynamic behavior close to phase transition points, Phys. Rev. Lett. 72: 3506 (1994).CrossRefGoogle Scholar
  14. 14.
    A. M. Guzman, P. Meystre and E. M. Wright, Semiclassical theory of a micromaser, Phys. Rev. A 40: 2471 (1989).Google Scholar
  15. 15.
    P. Meystre and E. M. Wright, Measurements-induced dynamics of a micromaser, Phys. Rev. A 37: 2524 (1988).Google Scholar
  16. 16.
    G. Raithel, C. Wagner, H. Walther, L. M. Narducci and M. O. Scully, The micromaser: a proving ground for quantum physics, in: Cavity Quantum Electrodynamics, P. R. Berman, ed., Academic Press, Inc., San Diego (1994).Google Scholar
  17. 17.
    J. Krause, M. O. Scully and H. Walther, Quantum theory of a micromaser: symmetry breaking via off-diagonal atomic injection, Phys. Rev. A 34: 2032 (1986).Google Scholar
  18. 18.
    P. Meystre, Cavity quantum optics and the quantum measurement process, in: Progress in Optics XXX, E. Wolf, ed., Elsevier Science Publishers, Amsterdam (1992).Google Scholar
  19. 19.
    L. Davidovich, J. M. Raimond, M. Brune and S. Haroche, Quantum theory of a two-photon micromaser, Phys. Rev. A 36: 3771 (1987).Google Scholar
  20. M. Brune, J.M. Raimond, P. Goy, L. Davidovich and S. Haroche, Realization of a two-photon maser oscillator, Phys. Rev. Lett. 59: 1899 (1987).CrossRefGoogle Scholar
  21. 20.
    J. M. Raimond, M. Brune, P. Goy and S. Haroche, J. de Physique Coll. 15: 17 (1990).Google Scholar
  22. 21.
    J. M. Raimond, M. Brune, L. Davidovich, P. Goy and S. Haroche, The two-photon Rydberg atom micromaser, in: Atomic Physics 11, S. Haroche, J. C. Gay, and G. Grynberg, eds., World Scientific, Singapore (1989).Google Scholar
  23. 22.
    CRC Handbook of Chemistry and Physics, R. C. Weast ed., 68th editon, CRC Press, Inc., Boca Raton (1987).Google Scholar
  24. 23.
    American Institute of Physics Handbook. D. E. Gray ed., 3rd edition, McGraw-Hill Book Company, New York (1982).Google Scholar
  25. 24.
    C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, Atom-Photon Interactions, John Wiley and Sons, Inc., NY. (1992).Google Scholar
  26. 25.
    G. Raithel, O. Benson, H. Walther, Atomic Interferometry with the micromaser, Phys. Rev. Lett. 75: 3446 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • G. Raithel
    • 1
  • O. Benson
    • 1
  • H. Walther
    • 1
  1. 1.Max-Planck-Institut für Quantenoptik and Sektion PhysikUniversität MünchenGarchingFed. Rep. of Germany

Personalised recommendations