Mechanical Effects of Radiation Pressure Quantum Fluctuations

  • Marc-Thierry Jaekel
  • Serge Reynaud
Part of the NATO ASI Series book series (NSSB, volume 358)


Lorentz electron theory [1] was an early unification of fields and particles, in that case electromagnetic fields and charged particles, in a common and universal description. This frame played a determinant role in a consistent development of classical field theory and relativistic mechanics [2]. This close connection was deeply perturbed by the advent of quantum formalisms, which ultimately emphasize the primary role of quantum fields. Within the framework of quantum electrodynamics, mechanical effects on charged particles, although obtainable in principle, are usually derived with difficulties [3].


Radiation Pressure Quantum Fluctuation Casimir Force Force Fluctuation Spectral Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.A. Lorentz. The Theory of Electrons, Leipzig (1915) [reprinted by Dover, New York (1952)].Google Scholar
  2. [2]
    A. Einstein, Ann. Physik 18:639 (1905).CrossRefGoogle Scholar
  3. A. Einstein, Ann. Physik 20:627 (1906).MATHCrossRefGoogle Scholar
  4. A. Einstein, Jahrb. Radioakt Elektron. 4:411 (1907).Google Scholar
  5. A. Einstein, Jahrb. Radioakt Elektron. 5:98 (1908).Google Scholar
  6. [H.M. Schwartz, Am. J. Phys. 45:512, 811, 899 (1977)].CrossRefGoogle Scholar
  7. [3]
    H. Groch and E. Kazes, in: Foundations of Radiation Theory and QED, A.O. Barut, ed., Plenum Press, New York (1980).Google Scholar
  8. [4]
    N. Bohr and L. Rosenfeld, Phys. Rev. 78:794 (1950).MATHCrossRefGoogle Scholar
  9. [5]
    V.B. Braginsky and F.Ya. Khalili. Quantum Measurement, University Press, Cambridge (1992).MATHCrossRefGoogle Scholar
  10. M.T. Jaekel and S. Reynaud, Europhys. Lett. 13:301 (1990).CrossRefGoogle Scholar
  11. M.T. Jaekel and S. Reynaud, Phys. Lett. A 185:143 (1994).Google Scholar
  12. [6]
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51:793 (1948).MATHGoogle Scholar
  13. G. Plunien, B. Müller and W. Greiner, Phys. Rep. 134:87 (1986).MathSciNetCrossRefGoogle Scholar
  14. [7]
    A. Einstein, Ann. Physik 17:549 (1905).MATHCrossRefGoogle Scholar
  15. A. Einstein, Phys. Z. 10:185 (1909).MATHGoogle Scholar
  16. A. Einstein, Phys. Z. 18:121 (1917).Google Scholar
  17. [8]
    P.S. Wesson, ApJ 378:466 (1991).CrossRefGoogle Scholar
  18. [9]
    L.S. Brown and G.J. Maclay, Phys. Rev. 184:1272 (1969).CrossRefGoogle Scholar
  19. [10]
    M.T. Jaekel and S. Reynaud, J. Phys. I France 1:1395 (1991).CrossRefGoogle Scholar
  20. [11]
    G. Barton, J. Phys. A: Math. Gen. 24:991, 5533 (1991); in: Cavity Quantum Electrodynamics (Supplement: Advances in Atomic, Molecular and Optical Physics, P. Berman, ed., Academic Press (1994).MathSciNetCrossRefGoogle Scholar
  21. [12]
    C. Eberlein, J. Phys. A: Math. Gen. 25:3015, 3039 (1992).MathSciNetMATHCrossRefGoogle Scholar
  22. [13]
    M.T. Jaekel and S. Reynaud, Quantum Opt. 4:39 (1992).MathSciNetCrossRefGoogle Scholar
  23. [14]
    R. Kubo, Rep. Prog. Phys. 29:255 (1966).CrossRefGoogle Scholar
  24. L.D. Landau and E.M. Lifschitz. Cours de Physique Théorique, Physique Statistique, première partie, Mir, Moscou, (1984).Google Scholar
  25. [15]
    H.B. Callen and T.A. Welton, Phys. Rev. 83:34 (1951).MathSciNetMATHCrossRefGoogle Scholar
  26. [16]
    B.S. de Witt, Phys. Rep. 19:295 (1975).CrossRefGoogle Scholar
  27. N.D. Birell and P.C.W., Davies. Quantum Fields in Curved Space, University Press, Cambridge (1982).CrossRefGoogle Scholar
  28. S.A. Fulling. Aspects of Quantum Field Theory in Curved Spacetime, University Press, Cambridge (1989).CrossRefGoogle Scholar
  29. [17]
    S.A. Fulling and P.C.W. Davies, Proc. R. Soc. A 348:393 (1976).MathSciNetGoogle Scholar
  30. [18]
    L.H. Ford and A. Vilenkin, Phys. Rev. D 25:2569 (1982).MathSciNetGoogle Scholar
  31. [19]
    P.A. Maia Neto, J. Phys. A Math. Gen. 27:2167 (1994).CrossRefGoogle Scholar
  32. [20]
    F. Rohrlich. Classical Charged Particles, Addison-Wesley, Reading (1965).MATHGoogle Scholar
  33. [21]
    M.T. Jaekel and S. Reynaud, Phys. Lett. A 167:227 (1992).Google Scholar
  34. [22]
    J. Meixner, in: Statistical Mechanics of Equilibrium and Non-Equilibrium, J. Meixner, ed., North-Holland, Amsterdam (1965).Google Scholar
  35. [23]
    H. Dekker, Phys. Lett. A 107:255 (1985).Google Scholar
  36. H. Dekker, Physica 133 A:1 (1985).MathSciNetGoogle Scholar
  37. [24]
    M.T. Jaekel and S. Reynaud, J. Phys.I France 3:1 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Marc-Thierry Jaekel
    • 1
  • Serge Reynaud
    • 2
  1. 1.Laboratoire de Physique Théorique de l’Ecole Normale Supérieure (CNRS)Paris Cedex 05France
  2. 2.Laboratoire Kastler Brossel (UPMC-ENS-CNRS)Paris Cedex 05France

Personalised recommendations