Advertisement

Is There Any Relationship between Maxwell and Dirac Equations?

  • Jayme VazJr.
  • Waldyr A. RodriguesJr.
Part of the NATO ASI Series book series (NSSB, volume 358)

Abstract

The electron is an intriguing object. In spite of all our misconceptions, along the last 100 years an extraordinary technological development emerged based on the concept of electron, which makes it difficult to doubt about its reality. On the other hand, electromagnetism and relativistic quantum mechanics are two of our most successful theories, but neither quantum mechanics nor electromagnetism help us to picture the electron, and to understand its role as a basic block of electric charge and matter.

Keywords

Dirac Equation Maxwell Equation Clifford Algebra Spinorial Representation Duality Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Keller, J., Adv. Appl. Clifford Algebras 3, 147 (1993).MathSciNetMATHGoogle Scholar
  2. [2]
    Rodrigues, Jr., W. A. and Oliveira, E. C, Int. J. Theor. Phys. 29, 397 (1990).CrossRefMATHGoogle Scholar
  3. [3]
    Lounesto, P., Found. Phys. 23, 1203 (1993).MathSciNetCrossRefGoogle Scholar
  4. [4]
    Figueiredo, V. L., Oliveira, E. C. and Rodrigues, Jr., W. A., Int. J. Theor. Phys. 29, 371 (1990).CrossRefMATHGoogle Scholar
  5. [5]
    Porteous, I., Topological Geometry, 2nd. ed., Cambridge University Press (1981).CrossRefMATHGoogle Scholar
  6. [6]
    Hestenes, D., Spacetime Algebra, Gordon & Breach (1966).Google Scholar
  7. [7]
    Rainich, G. Y., Trans. Am. Math. Soc. 27, 106 (1925).MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Misner, C. W. and Wheeler, J. A., Ann. Phys. 2, 525 (1957).MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Vaz, Jr., J. and Rodrigues, Jr., W. A., Int. J. Theor. Phys. 32, 945 (1993).MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Campolattaro, A. A., Int. J. Theor. Phys. 19, 99 (1980).MathSciNetCrossRefMATHGoogle Scholar
  11. Campolattaro, A. A., Int. J. Theor. Phys. 19, 127 (1980).MathSciNetCrossRefMATHGoogle Scholar
  12. [11]
    Campolattaro, A. A. Int. J. Theor. Phys. 29, 141 (1990).MathSciNetCrossRefMATHGoogle Scholar
  13. [12]
    de Broglie, L., Ondes Electromagnétiques et Photons, Gauthier-Villars (1967).Google Scholar
  14. [13]
    Hestenes, D., Found. Phys. 20, 1213 (1990).MathSciNetCrossRefGoogle Scholar
  15. [14]
    de Broglie, L. Found. Phys. 1, 5 (1970).CrossRefGoogle Scholar
  16. [15]
    Rodrigues, Jr., W. A., Vaz, Jr., J. and Recami, E., Found. Phys. 23, 469 (1993).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jayme VazJr.
    • 1
  • Waldyr A. RodriguesJr.
    • 2
  1. 1.DFESCM — Instituto de Física “Gleb Wataghin”Universidade Estadual de CampinasCampinasBrazil
  2. 2.Departamento de Matemática Aplicada — IMECCUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations