Advertisement

Clifford Algebras, Supercalculus, and Spinning Particle Models

  • Jayme VazJr.
  • Waldyr A. RodriguesJr.
Part of the NATO ASI Series book series (NSSB, volume 358)

Abstract

Spinning particles have been studied by different authors and in different occasions (see [1] for some references), and actually the interest on spinning particles models revived specially due to the interest on spinning strings. Notwithstanding, producing a classical spinning particle model that after quantization gives Dirac equation has always been a very appealing idea which has been the subject of several interesting papers containing new physical insights and beautiful mathematics. In this paper we plan to study in details some aspects of spinning particle models, and in particular the one proposed by Barut and Zanghi [2], and some of its possible generalizations.

Keywords

Clifford Algebra Radiation Reaction Grassmann Variable Dirac Theory Frenet Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pavsic, M., Recami, E., Rodrigues, Jr., W. A. Maccarrone, G. D., Raciti, F. and Salesi, G., Phys. Lett. B 318, 481 (1993).MathSciNetCrossRefGoogle Scholar
  2. [2]
    Barut, A. O. and Zanghi, N., Phys. Rev. Lett. 52, 2009 (1984).MathSciNetCrossRefGoogle Scholar
  3. [3]
    Berezin, F. A. and Marinov, M. S., Ann. Physics 104, 336 (1977).CrossRefMATHGoogle Scholar
  4. [4]
    DeWitt, B., Supermanifolds, Cambridge University Press (1984).Google Scholar
  5. [5]
    Oziewicz, Z., in Clifford Algebras and Their Applications in Mathematical Physics, Chisholm, J. S. R. and Common, A. K. (eds.), pg. 245, D. Reidel (1985).Google Scholar
  6. [6]
    Rodrigues, Jr., W. A., Vaz, Jr., J., Recami, E. and Salesi, G., Phys. Lett. B 318, 623 (1993).MathSciNetCrossRefGoogle Scholar
  7. [7]
    Rodrigues, Jr., J. and Vaz, Jr., J., in Clifford Algebras and Their Applications in Mathematical Physics, Brackx, F., Delanghe, D. and Serras, H. (eds.), pg. 397, Kluwer (1993).Google Scholar
  8. [8]
    Barut, A. O. and Duru, I. H., Phys. Rev. Lett. 53, 2355 (1984).MathSciNetCrossRefGoogle Scholar
  9. [9]
    Heisenberg, W., Introduction to the Unified Field Theory of Elementary Particles, Interscience (1966).Google Scholar
  10. [10]
    Lounesto, P., Found. Phys. 23, 1203 (1993).MathSciNetCrossRefGoogle Scholar
  11. [11]
    Figueiredo, V. L., Oliveira, E. C. and Rodrigues, Jr., W. A., Int. J. Theor. Phys. 29, 371 (1990).CrossRefMATHGoogle Scholar
  12. [12]
    Rodrigues, Jr., W. A., Souza, Q. A. G., Vaz, Jr., J. and Lounesto, P., “Dirac-Hestenes Spinor Fields, Their Covariant Derivatives, and Their Formulation on Riemann-Cartan Manifolds”, preprint RP 64/93 IMECC-UNICAMP, submitted for publication.Google Scholar
  13. [13]
    Hestenes, D., Found. Phys. 20, 1213 (1991).MathSciNetCrossRefGoogle Scholar
  14. [14]
    Faria-Rosa, M. A. and Rodrigues, Jr., W. A., Found. Phys. 19, 705 (1989).MathSciNetCrossRefGoogle Scholar
  15. [15]
    Sachs and Wu, General Relativity for Mathematicians, Springer-Verlag (1977).Google Scholar
  16. [16]
    Salam, A. and Strathdee, J., Nucl. Phys. 76 477 (1974).MathSciNetCrossRefGoogle Scholar
  17. [17]
    Schönberg, M., An. Acad. Brasileira Ciências 28, 11 (1956).MATHGoogle Scholar
  18. [18]
    Witten, E., Mod. Phys. Lett. A5, 487 (1990).MathSciNetGoogle Scholar
  19. [19]
    Rodrigues, Jr., W. A., Vaz, Jr., J. and Pavšič, M., “The Clifford Bundle and the Dynamics of the Superparticle”, preprint IMECC-UNICAMP, submitted for publication.Google Scholar
  20. [20]
    Rodrigues, Jr., W. A., Souza, Q. A. G. and Vaz, Jr., J., in Gravitation: The Spacetime Structure, Letelier, P. S. and Rodrigues, Jr., W. A. (eds.), pg. 534, World Scientific (1994).Google Scholar
  21. [21]
    Lasenby, A., Doran, C. and Gull, S., Found. Phys. 23, 1295 (1993).MathSciNetCrossRefGoogle Scholar
  22. [22]
    Gull, S., in The Electron, Hestenes, D. and Weingartshof, A. (eds.), pg. 37, Kluwer (1991).Google Scholar
  23. [23]
    Rawnsley, J., Lett. Math. Phys. 24, 331 (1992).MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    Barut, A.O. and Pavšič, M., Class. Quantum Gravity, 4, L41 (1987).CrossRefGoogle Scholar
  25. Barut, A.O. and Pavšič, M., Class. Quantum Gravity, 4 L131 (1987).CrossRefGoogle Scholar
  26. Barut, A.O. and Pavšič, M., Class. Quantum Gravity, 5 707 (1988).CrossRefGoogle Scholar
  27. [25]
    Barut, A.O. and Unal, N., Found. Phys., 23, 1423 (1993).MathSciNetCrossRefGoogle Scholar
  28. [26]
    Recami, E., Found. Phys. 17, 239 (1987).MathSciNetCrossRefGoogle Scholar
  29. [27]
    de Broglie, L., Ondes Electromagnétiques et Photons, Gauthiers-Villars (1967).Google Scholar
  30. [28]
    Hestenes, D., J. Math. Phys. 15, 1768 (1974).CrossRefGoogle Scholar
  31. [29]
    Barut, A.O., Electrodynamics and Classical Theory of Fields and Particles, Dover Publ. (1980).Google Scholar
  32. [30]
    Lovelock, D. and Rund, H., Tensors, Differential Forms and Variational Principles, John Wiley & Sons (1975).Google Scholar
  33. [31]
    MacGregor, M., The Enigmatic Electron, Kluwer (1992).Google Scholar
  34. [32]
    Particle Data Group, “Review of Particle Properties”, Phys. Rev. D45, Part II (1992).Google Scholar
  35. [33]
    Weis, A., in these proceedings.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jayme VazJr.
    • 1
  • Waldyr A. RodriguesJr.
    • 2
  1. 1.DFESCM — Instituto de Física “Gleb Wataghin”Universidade Estadual de CampinasCampinasBrazil
  2. 2.Departamento de Matemática Aplicada — IMECCUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations