Advertisement

Dynamical Aspects of Classical Electron Theory

  • D. Bambusi
  • A. Carati
  • L. Galgani
  • D. Noja
  • J. Sassarini
Part of the NATO ASI Series book series (NSSB, volume 358)

Abstract

By classical electron theory we mean what is in principle a very simple thing, namely the Maxwell-Lorentz system, which consists of Maxwell equations with sources due to a point particle, and the relativistic Newton equation for the particle, with Lorentz force due to the electromagnetic field.

Keywords

Cauchy Problem Point Limit Point Particle Classical Electrodynamic Bare Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Nelson, Quantum fluctuations, Princeton U.P. (Princeton, 1985).Google Scholar
  2. [2]
    S. Coleman, R.E. Norton, Runaway modes in model field theories, Phys. Rev. 125, 1422–1428 (1962).MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    R. Haag, Z. Naturforsch. 10 A, 752 (1955).Google Scholar
  4. [4]
    A. Kramers, Contribution to the 1948 Solvay Conference, in Collected scientific papers, North-Holland (Amsterdam, 1956), page 845.Google Scholar
  5. [5]
    N.G. van Kampen, Mat. Fys. Medd. K. Dansk. Vidensk. Selsk 26, 1 (1951).Google Scholar
  6. [6]
    J. Kijowski, Electrodynamics of moving particles, GRG 26, 167–201 (1994).MathSciNetGoogle Scholar
  7. [7]
    D. Bambusi and D. Noja, Classical electrodynamics of point particles and mass renormalization. Some preliminary results. Lett. Math. Phys. in print (1966).Google Scholar
  8. [8]
    L. Galgani, C. Angaroni, L. Forti, A. Giorgilli and F. Guerra, Phys. Lett. A139, 221 (1989).Google Scholar
  9. [9]
    G. Arioli and L. Galgani, Numerical studies on classical electrodynamics, Phys. Lett. A162, 313–322 (1992).Google Scholar
  10. [10]
    G. Benettin and L. Galgani, J. Stat. Phys. 27, 153 (1982).MathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Bambusi and L. Galgani, Some rigorous results on the Pauli-Fierz model of classical electrodynamics, Ann. Inst. H. Poincaré, Physique théorique, 58, 155–171 (1993).MathSciNetMATHGoogle Scholar
  12. [12]
    D. Bambusi, A Nekhoroshev-type theorem for the Pauli-Fierz model of classical elctrodynamics, Ann. Inst. H. Poincaré, Physique théorique, 60, 339–371 (1994).MathSciNetMATHGoogle Scholar
  13. [13]
    D. Bambusi, A proof of the Lorentz-Dirac equation for charged point particles, preprint (1988).Google Scholar
  14. [14]
    A. Posilicano, D. Noja, The wave equation with one point interaction and the linearized classical electrodynamics of a point particle, preprint (1996).Google Scholar
  15. [15]
    M. Abraham, Ann. d. Phys., 10, 105 (1903).MATHGoogle Scholar
  16. [16]
    H.A. Lorentz, The theory of electrons, Dover (New York, 1952); first edition 1909.Google Scholar
  17. [17]
    G. Morpurgo, Introduzione alla fisica delle particelle, Zanichelli (Bologna, 1987).Google Scholar
  18. [18]
    J. Sassarini, Doctoral thesis, University of Milano (1995).Google Scholar
  19. [19]
    D. Bohm, M. Weinstein, The self oscillations of a charged particle, Phys. Rev, 74, 1789–1798 (1948).MATHGoogle Scholar
  20. [20]
    G.A. Schott, Phil. Mag. 29, 49–62 (1915).Google Scholar
  21. [21]
    P.A.M. Dirac, Proc, Royal Soc, (London) A167, 148–168 (1938).CrossRefGoogle Scholar
  22. [22]
    A. Carati, P. Delzanno, L. Galgani, J. Sassarini, Nonuniqueness properties of the physical solutions of the Lorentz-Dirac equation, Nonlinearity, 8 65–79 (1995).MathSciNetMATHGoogle Scholar
  23. [23]
    A. Carati and L. Galgani, Asymptotic character of the series of classical electrodynamics, and an application to bremsstrahlung, Nonlinearity 6, 905–914 (1993).MathSciNetMATHGoogle Scholar
  24. [24]
    J.K. Hale and A.P. Stokes, J. Math. Phys. 3, 70 (1962).MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    F. Bopp, Ann. der Phys. 42, 573–608 (1943).MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    F. Rohrlich, Classical charged particles, Addison-Wesley (Reading, 1965).MATHGoogle Scholar
  27. [27]
    A. Carati, Bell inequalities in classical electrodynamics, in preparation.Google Scholar
  28. [28]
    A. Carati, L. Galgani, Wave-like properties of classical charged particles, in preparation.Google Scholar
  29. [29]
    A. Carati, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • D. Bambusi
    • 1
  • A. Carati
    • 1
  • L. Galgani
    • 1
  • D. Noja
    • 1
  • J. Sassarini
    • 1
  1. 1.Dipartimento di Matematica dell’UniversitàMilanoItaly

Personalised recommendations