Hunting the Electron Electric Dipole Moment

  • Antoine Weis
Part of the NATO ASI Series book series (NSSB, volume 358)


The CPT theorem, the fact that the “laws of physics”1 are invariant with respect to the combined discrete symmetry operations C (charge conjugation = matter-antimatter exchange), P (parity = mirror symmetry) and T (time reversal), is one of the uppermost credos of modern physics (Jost, 1960; Streater and Wightman, 1964). On the other hand there is no fundamental reason for each symmetry operation to be conserved individually. The experimental discovery of parity violation in β-decay in 1957 therefore profoundly changed our view of the discrete symmetry laws governing atomic and subatomic processes. Parity violation has since been investigated in a great variety of systems including elementary particles, nuclei and atoms and is well understood today in the frame of the so-called standard model of electroweak interactions developed in the sixties.


Electric Dipole Moment Atomic Beam Parity Violation Static Electric Field Neutron Electric Dipole Moment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullah, K., Carlberg, C., Commins, E.D., Gould, H., and Ross, S.B., 1990, New Experimental Limit on the Electron Electric Dipole Moment, Phys.Rev.Lett. 65:2347.CrossRefGoogle Scholar
  2. Altarev, I.S. et al, 1986, Search For an Electric Dipole Moment of the Neutron, JETP Lett. 44:460.Google Scholar
  3. Altarev, I.S. et al., 1992, New Measurement of the Electric Dipole Moment of the Neutron, Phys.Lett. B276:242.Google Scholar
  4. Arndt, M., Kanorsky, S.I., Weis, A., and Haensch, T.W., 1993, Can Paramagnetic Atoms in Superfluid Helium be Used to Search for Permanent Electric Dipole Moments?, Phys.Lett. A174:298.Google Scholar
  5. Arndt, M., Kanorsky, S.L., Weis, A., and Haensch, T.W., 1995, Long Electronic Spin Relaxation Times of Cs Atoms in solid 4He, Phys.Rev.Lett. 74:1359.CrossRefGoogle Scholar
  6. Arnison, G. and al., e., 1983, Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at s1/2=540 GeV, Phys.Lett. 122B:103.Google Scholar
  7. Arnison, G. and al., e., 1983, Experimental Observation of Lepton Pairs of Invariant Mass Around 95 GeV/c2 at the CERN SPS Collider, Phys.Lett. 126B:398.Google Scholar
  8. Aubert, B. and al., e., 1974, Further Observation of Muonless Neutrino-Induced Inelastic Interactions, Phys.Rev.Lett. 32:1454.CrossRefGoogle Scholar
  9. Banner, M. and al., e., 1983, Observation of Single Isolated Electrons of High Transverse Momentum in Events with Missing Transverse Energy at the CERN p(bar)p Collider, Phys.Lett. 122B.Google Scholar
  10. Barr, S.M., 1993, A Review of CP Violation in Atoms, Lnt.J.Mod.Phys. A8:209.CrossRefGoogle Scholar
  11. Barr, S.M., 1994, Atomic Electric Dipole Moments and CP Violation, in XXIXth Rencontres de Moriond, Editions Frontieres, Villars/Ollon, Switzerland.Google Scholar
  12. Benvenuti, A. and al., e., 1974, Observation of Muonless Neutrino-Induced Inelastic Interactions, Phys.Rev.Lett. 32:800.CrossRefGoogle Scholar
  13. Bernreuther, W. and Suzuki, M., 1991, The Electric Dipole Moment of the Electron, Rev.Mod.Phys. 63:313.CrossRefGoogle Scholar
  14. Bouchiat, M.A. and Bouchiat, C.C., 1974, I. Parity Violation Induced by Weak Neutral Currents in Atomic Physics, J.Physique 35:899.CrossRefGoogle Scholar
  15. Bouchiat, M.A. and Bouchiat, C.C., 1974, Weak Neutral Currents in Atomic Physics, Phys.Lett. 48B:111.Google Scholar
  16. Bouchiat, M.A., Guena, J., Hunter, L., and Pottier, L., 1982, Observation of a Parity Violation in Cesium, Phys.Lett. B 117:358.Google Scholar
  17. Cho, D., Sangster, K., and Hinds, E.A., 1991, Search for Time-Reversal-Symmetry Violation in Thallium Fluoride using a Jet Source, Phys.Rev.A 44:2783.CrossRefGoogle Scholar
  18. Christenson, J.H., Cronin, J.W., and Fitch, V.L., 1964, Evidence for the 2π Decay of the K2 Meson, Phys.Rev.Lett. 13:138.CrossRefGoogle Scholar
  19. Commins, E.D., 1993, Atomic Parity Nonconservation and Electric Dipole Moment Experiments — a 1992 Review, Phys. Script. t46:92.CrossRefGoogle Scholar
  20. Commins, E.D., 1993, Resource Letter ETDTSTS-1: Experimental Tests of the Discrete Space-Time Symmetries, Am.J.Phys. 61:778.CrossRefGoogle Scholar
  21. Commins, E.D., Ross, S.B., DeMille, D., and Regan, B.C., 1994, Improved Experimental Limit on the Electric Dipole Moment of the Electron, Phys.RevA 50:2960.CrossRefGoogle Scholar
  22. Conti, R.S. and Khriplovich, I.B., 1992, New Limits on T-Odd, P-Even Interactions, Phys.Rev.Lett. 68:3262.CrossRefGoogle Scholar
  23. Corney, A., 1979, Atomic and Laser Spectroscopy. Oxford University Press, Oxford.Google Scholar
  24. Flambaum, V.V., 1976, Yad.Fiz 24:383.Google Scholar
  25. Fortson, E.N. and Lewis, L.L., 1984, Atomic Parity Nonconservation Experiments, Phys.Rep. 113:289.CrossRefGoogle Scholar
  26. Friedman, J.I. and Telegdi, V.L., 1957, Nuclear Emulsion Evidence for Parity Nonconservation in the Decay Chain π+−03BC;+−e+, Phys.Rev. 105:1681.CrossRefGoogle Scholar
  27. Garwin, R.L., Lederman, L.M., and Weinrich, M.W., 1957, Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muon, Phys.Rev. 105:1415.CrossRefGoogle Scholar
  28. Golub, R., 1993, New Application of the Superthermal Ultra-Cold Neutron Source. I — The Search for the Neutron Electric Dipole Moment, J.Physique 44:L321.MathSciNetGoogle Scholar
  29. Golub, R. and Lamoreaux, S.K., 1994, Neutron Electric Dipole Moment, Ultracold Neutrons and Polarized 3He, Phys.Rep. 237:2.CrossRefGoogle Scholar
  30. Gould, H., 1970, Search for an Electric Dipole Moment in Thallium, Phys.Rev.Lett. 24:1091.CrossRefGoogle Scholar
  31. Happer, W., 1972, Optical Pumping, Rev.Mod.Phys. 44:169.CrossRefGoogle Scholar
  32. Hartley, A.C., Lindroth, E., and Mårtensson-Pendrill, A.M., 1990, Parity Non-Conservation and Electric Dipole Moments in Caesium and Thallium, J.Phys.B.At.Mol.Phys. 23:3417.CrossRefGoogle Scholar
  33. Hasert, F.J. and al., e., 1973, Observation of Neutrino-Like Interactions Without Muon or Electron in the Gargamelle Neutrino Experiment, Phys.Lett. 46B:138.Google Scholar
  34. Hinds, E., private communication (1994).Google Scholar
  35. Hinds, E.A. and Sandars, P.G.H., 1980, Electric Dipole Hyperfine Structure of T1F, Phys.RevA 21:471.CrossRefGoogle Scholar
  36. Hinds, E.A., 1988, Experiments on T-Symmetry and Parity Violation in Atomic Physics, in Atomic Physics 11, World Scientific, Paris.Google Scholar
  37. Hunter, L.R., 1991, Tests of Time-Reversal Invariance in Atoms, Molecules, and the Neutron, Science 252:73.CrossRefGoogle Scholar
  38. Jackson, J.D., Treiman, S.B., and Wyld, H.W.J., 1957, Possible Tests of Time Reversal Invariance in Beta Decay, Phys.Rev. 106:517.CrossRefGoogle Scholar
  39. Jacobs, J.P., Klipstein, W.M., Lamoreaux, S.K., Heckel, B.R., and Fortson, E.N., 1993, Testing Time-Reversal Symmetry using 199Hg, Phys.Rev.Lett. 71:3782.CrossRefGoogle Scholar
  40. Johnson, W.R., Guo, D.S., Idrees, M., and Sapirstein, J., 1985, Weak Interaction Effects in Heavy Atomic Systems, Phys.RevA 32:2093.CrossRefGoogle Scholar
  41. Johnson, W.R., Guo, D.S., Idrees, M., and Sapirstein, J., 1986, Weak Interaction Effects in Heavy Atomic Systems II, Phys.RevA 34:1043.CrossRefGoogle Scholar
  42. Jost, R., 1960, Theoretical Physics in the Twentieth Century. Interscience, New York.Google Scholar
  43. Kanorsky, S.I., Arndt, M., Dziewior, R., Weis, A., and Hänsch, T.W., 1994, Optical Spectroscopy of Atoms Trapped in Solid Helium, Phys.Rev.B 49:3645.CrossRefGoogle Scholar
  44. Kanorsky, S.I., Arndt, M., Dziewior, R., Weis, A., and Hänsch, T.W., 1994, Pressure Shift and Broadening of the Resonance Line of Barium Atoms Trapped in Liquid Helium, Phys.Rev.B 50:6296.CrossRefGoogle Scholar
  45. Kanorsky, S.I., Weis, A., Wurster, J., and Hänsch, T.W., 1993, Quantitative Investigation of the Resonant Nonlinear Faraday Effect under Conditions of Optical Hyperfine Pumping, Phys.RevA 47:1220.CrossRefGoogle Scholar
  46. Kastler, A., 1950, Quelques Suggestions Concernant la Production Optique et la Detection Optique d’une Inegalite de Population des Niveaux de Quantification Spatiale des Atomes. Application a l’Expérience de Stern-Gerlach et a la Resonance Magnetique, J.Phys.Rad. 11:255.CrossRefGoogle Scholar
  47. Khriplovich, I.B., 1988, T-Invariance Violation, can it be observed in Atoms?, in Atomic Physics 11, World Scientific, Paris.Google Scholar
  48. Khriplovich, I.B., 1991, Parity Nonconservation in Atomic Phenomena. Gordon and Breach Science Publishers, Amsterdam.Google Scholar
  49. Kobayashi, M. and Maskawa, T., 1973, CP-Violation in the Renormalizable Theory of Weak Interaction, Prog.Theor.Phys. 49:652.CrossRefGoogle Scholar
  50. Kozlov, M.G. and Ezhov, V.F., 1994, Enhancement of the Electric Dipole Moment of the Electron in the YbF Molecule, Phys.RevA 49:4502.CrossRefGoogle Scholar
  51. Lamoreaux, S.K., private communication (1995).Google Scholar
  52. Landau, L., 1957, On the Conservation laws for weak Interactions, Nucl.Phys. 3:127.CrossRefGoogle Scholar
  53. Lee, T.D. and Yang, C.N., 1956, Question of Parity Nonconservation in Weak Interactions, Phys.Rev. 104:254.CrossRefGoogle Scholar
  54. Liu, Z.W. and Kelly, H.P., 1992, Ananlysis of Atomic Electric Dipole Moment in Thallium by All-Order Calculation in Many-Body Perturbation Theory, Phys.RevA 45:4210.CrossRefGoogle Scholar
  55. Mårtensson-Pendrill, A.-M., 1992, Calculation of P-and T-Violating Properties in Atoms and Molecules. Plenum Press, New York.Google Scholar
  56. Michel, F.C., 1965, Neutral Weak Interaction Currents, Phys.Rev.B 138:408.CrossRefGoogle Scholar
  57. Moriond, 1995, XXXth Rencontres de Moriond, Editions Frontieres, Villars/Ollon, Switzerland.Google Scholar
  58. Murthy, S.A., Krause, D., Li, Z.L., and Hunter, L.R., 1989, New Limits on the Electron Electric Dipole Moment from Cesium, Phys.Rev.Lett. 63:965.CrossRefGoogle Scholar
  59. Noecker, M.C., Masterson, B.P., and Wieman, C.E., 1988, Precision Measurement of Parity Nonconservation in Atomic Cesium, a Low Energy Test of the Electroweak Theory, Phys.Rev.Lett. 61:310.CrossRefGoogle Scholar
  60. Pendlebury, J.M., 1992, Steps to Improve the Measurement of the Neutron Electric Dipole Moment, Nucl.Phys. A546:359.Google Scholar
  61. Pendlebury, M., 1995, The Neutron EDM Experiment in Preparation at the ILL, in XXXth Rencontres de Moriond, Villars/Ollon (CH).Google Scholar
  62. Prescott, C.Y. and al., e., 1978, Parity Non-Conservation in Inelastic Electron Scattering, Phys.Lett. B77:347.Google Scholar
  63. Pryor, C. and Wilczek, F., 1987, “Artificial Vacuum” for T-Violation Experiment, Phys.Lett. B194:137.Google Scholar
  64. Purcell, E.M. and Ramsey, N.F., 1950, On the Possibility of Electric Dipole Moments for Elementary Particles and Nuclei, Phys.Rev. 78:807.CrossRefGoogle Scholar
  65. Ramsey, N.F., 1990, Electric Dipole Moment of the Neutron, Am.Rev.Nucl.Part.Sci. 40:1.MathSciNetCrossRefGoogle Scholar
  66. Ramsey, N.F., 1994, Electric Dipole Tests of Time Reversal Symmetry, in Atomic Physics 14, Boulder.Google Scholar
  67. Ramsey, N.F., 1956, Molecular Beams. Oxford Univ. Press, Clarendon.Google Scholar
  68. Ramsey, N.F., 1958, Time Reversal, Charge Conjugation, Magnetic Pole Conjugation, and Parity, Phys.Rev. 109:225.CrossRefGoogle Scholar
  69. Reyher, M.J., Bauer, H., Huber, C., Mayer, R., Schäfer, A., and Winnacker, A., 1986, Spectroscopy of Barium Ions in Hell, Phys.Lett. Al 15:238.Google Scholar
  70. Sandars, P.G.H., in Atomic Physics, (World Scientific, Singapore, 1984).Google Scholar
  71. Sandars, P.G.H., 1965, The Electric Dipole Moment of an Atom, Phys.Lett. 14:194.CrossRefGoogle Scholar
  72. Sandars, P.G.H., 1966, Enhancement Factor for the Electric Dipole Moment of the Valence Electron in an Alkali Atom, Phys.Lett. 22:290.CrossRefGoogle Scholar
  73. Sandars, P.G.H., 1967, Measurability of the Proton Electric Dipole Moment, Phys.Rev.Lett. 19.Google Scholar
  74. Sandars, P.G.H. and Sternheimer, R.M., 1975, Electric Dipole Moment Enhancement Factor for the Thallium Atom, and a New Upper Limit on the Electric Dipole Moment of the Electron, Phys.Rev.A 11:473.CrossRefGoogle Scholar
  75. Sandars, P.G.H., 1984, Atomic Physics 9, World Scientific, Singapore.Google Scholar
  76. Schiff, L.I., 1963, Measurability of Nuclear Electric Dipole Moments, Phys.Rev. 132:2194.MathSciNetCrossRefGoogle Scholar
  77. Schubert, K.R. and al, e., 1970, The Phase of v00 and the Invariances CPT and T, Phys.Lett. 31B:662.Google Scholar
  78. Schuh, B., Kanorsky, S.I., Weis, A., and Haensch, T.W., 1993, Observation of Ramsey Fringes in Nonlinear Faraday Rotation, Opt.Commun. 100:451.CrossRefGoogle Scholar
  79. Shukla, A., Das, B.P., and Andriessen, J., 1994, Relativistic Many-Body Calculation of the Electric Dipole Moment of Atomic Rubidium due to Parity and Time-Reversal Violation, Phys.RevA 50:1155.CrossRefGoogle Scholar
  80. Slichter, C.P., 1963, Principles of Magnetic Resonance. Harper&Row, New York.Google Scholar
  81. Smith, J.H., Purcell, E.M., and Ramsey, N.F., 1957, Experimental Limit to the Electric Dipole Moment of the Neutron, Phys.Rev. 108:120.CrossRefGoogle Scholar
  82. Smith, K.F. et al, 1990, A Search for the Electric Dipole Moment of the Neutron, Phys.Lett. B234:191.Google Scholar
  83. Sobelman, I.I., 1979, Atomic Spectra and Radiative Transitions. Springer, Berlin.CrossRefGoogle Scholar
  84. Sternheimer, R.M., 1969, Electronic Polarizybilities of the Alkali Atoms. II, Phys.Rev. 183:112.CrossRefGoogle Scholar
  85. Streater, R.F. and Wightman, A.S., 1964, PCT, Spin, Statistics, and All That. Benjamin, New York.Google Scholar
  86. Weinberg, S., 1974, Recent Progress in Gauge Theories of the Weak, Electromagnetic, and Strong Interactions, Rev.Mod.Phys. 46:255.MathSciNetCrossRefGoogle Scholar
  87. Weis, A., Schuh, B., Kanorsky, S.I., and Hänsch, T.W., 1993, Use of Faraday-Ramsey Spectroscopy to Search For Permanent Atomic Electric Dipole Moments, in EQEC ′93, EPS, Firenze.Google Scholar
  88. Weis, A., Kanorsky, S.I., Arndt, M., and Hänsch, T.W., 1995, Spin Physics in Solid Helium: Experimental Results and Applications, Z Physik 598:359.Google Scholar
  89. Weis, A., Wurster, J., and Kanorsky, S.I., 1993, Qualitative Interpretation of the Nonlinear Farady Effect as a Hanle Effect of a Light-Induced Birefringence, JOSA 5 10:716.Google Scholar
  90. Weisskopf, M.C., Carrico, J.P., Gould, H., Lipworth, E., and Stein, T.S., 1968, Electric Dipole Moment of the Cesium Atom. A New Upper Limit to the Electric Dipole Moment of the Electron, Phys.Rev.Lett. 21:1645.CrossRefGoogle Scholar
  91. Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D., and Hudsom, R.P., 1957, Experimental Test of Parity Conservation in Beta Decay, Phys.Rev. 105:1413.CrossRefGoogle Scholar
  92. Zeldovich, Y.B., 1959, Parity Nonconservation in the First Order in the Weak-Interaction Constant in Electron Scattering and Other Effects, ZETF 36:964.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Antoine Weis
    • 1
  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations