Advertisement

Mechanisms by Which Matrix Metalloproteinases May Influence Apoptosis

  • William C. Powell
  • Lynn M. Matrisian

Abstract

Apoptotic cell death plays a critical role in controlling cell number and tissue morphology in embryonic and adult organisms. Recently, there have been significant advances in the understanding of apoptosis at the cellular level. The cloning of diverse genes such as Fas and TNF α ligands/receptors, bcl-2, and ICE family members has lead to an increased knowledge of the signal transduction pathways used by cells to monitor and respond to their environment by inducing apoptosis. Components of the extracellular matrix play an important role in this process. Basement membrane and extracellular matrix contain information critical to the identity of the cell and the context in which it responds to external signals. Disruption of the matrix by the matrix-degrading metalloproteinases can therefore dramatically alter the response of cells to apoptotic signals. It is also interesting to consider that the proteolytic activity of metalloproteinases toward matrix components or other potential substrates provide alternative mechanisms by which degradative enzymes could actively influence apoptotic pathways. This review will discuss two systems in which metalloproteinases have been shown to be involved in apoptotic pathways and discuss potential mechanisms for this effect.

Keywords

Basement Membrane Mammary Gland Mammary Epithelial Cell Mouse Mammary Gland Whey Acidic Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anichini, E., Fibbi, G., Pucci, M., Caldini, R., Chevanne, M., and Del Rosso, M. (1994). Production of second messengers following chemotactic and mitogenic urokinase-receptor interaction in human fibroblasts and mouse fibroblasts transfected with human urokinase receptor. Experimental Cell Research 231, 438–448.CrossRefGoogle Scholar
  2. Baker, S. J., and Reddy, E. P. (1996). Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene 12, 1–9.PubMedGoogle Scholar
  3. Birkedal-Hansen, H., Moore, W. G. I., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A., and Engler, J. A. (1993). Matrix Metalloproteinases: A Review. Critical Reviews in Oral Biology and Medicine 4, 197–250.PubMedGoogle Scholar
  4. Blasi, F., Behrendt, N., Cubellis, M. V., Ellis, V., Lund, L. R., Masucci, M. T., Moller, L. B., Olson, D. P., Pedersen, N., Ploug, M., Ronne, E., and Dano, K. (1990). The urokinase receptor and regulation of cell surface plasminogen activation. Cell Differ.Dev. 32, 247–254.PubMedCrossRefGoogle Scholar
  5. Boudreau, N., Sympson, C. J., Werb, Z., and Bissel, M. J. (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267, 891–893.PubMedCrossRefGoogle Scholar
  6. Boudreau, N., Werb, Z., and Bissell, M.J. (1996). Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc. Natl. Acad. Sci. USA 93: 3509–3513.PubMedCrossRefGoogle Scholar
  7. Brooks, P.C., Montgomery, A.M.P., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., and Cheresh D.A. (1996). Integrin αvβ3 antagonist promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164.CrossRefGoogle Scholar
  8. Brown, P. D. (1995). Matrix metalloproteinase inhibitors: a novel class of anticancer agents. Advances in Enzyme Regulation 35, 293–301.PubMedCrossRefGoogle Scholar
  9. Gearing, A. J. H., Beckett, P., Christodoulou, M., Churchill, M., Clements, J., Davidson, A. H., Drummond, A. H., Galloway, W. A., Gilbert, R., Gordon, J. L., Leber, T. M., Mangan, M., Miller, K., Nayee, P., Owen, K., Patel, S., Thomas, W., Wells, G., Wood, L. M., and Woolley, K. (1994). Processing of tumour necrosis factor-a precursor by metalloproteinases. Nature 370, 555–557.PubMedCrossRefGoogle Scholar
  10. Hosaka, M., Nagahama, M., Kim, W. S., Watanabe, T., Hatsuzawa, K., Ikemizu, J., Murakami, K., and Nakayama, K. (1991). Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. Journal of Biological Chemistry 266, 12127–12130.PubMedGoogle Scholar
  11. Hulboy, D.L., Rudolph, L.A., and Matrisian, L.M. (1996). Matrix metalloprotienases as mediators of reproductive function. Mol. Hum. Reprod. In Press.Google Scholar
  12. Imai, K., Ohuchi, E., Aoki, T., Nomura, H., Fugii, Y., Sato, H., Seiki, M., and Okada, Y. (1996). Membrane-type matrix metalloproteinase lis a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res 56, 2707–2710.PubMedGoogle Scholar
  13. Jenne, D. E., and Tschopp, J. (1992). Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem Sci 17, 154–159.PubMedCrossRefGoogle Scholar
  14. Ju, S., Panka, D. J., Cui, H., Ettinger, R., El-Khatib, M., Sherr, D. H., Stanger, B. Z., and Marshak-Rothstein, A. (1995). Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444–48.PubMedCrossRefGoogle Scholar
  15. Kayagaki, N., Kawasaki, A., Ebata, T., Ohmoto, H., Ikeda, S., Inoue, S., Yoshino, K., Okumura, K., and Yagita, H. (1995). Metalloproteinase-mediated release of human Fas ligand. Journal of Experimental Medicine 182, 1777–1783.PubMedCrossRefGoogle Scholar
  16. Lin, C. Q., and Bissell, M. J. (1993). Multi-faceted regulation of cell differentiation by extracellular matrix. Faseb J 7, 737–743.PubMedGoogle Scholar
  17. Lund, L. R., Romer, J., Thomasset, N., Solberg, H., Pyke, C., Bissell, M. J., Dano, K., and Werb, Z. (1996). Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and-dependent pathways. Development 122, 181–93.PubMedGoogle Scholar
  18. Marcotte, P. A., Kozan, I. M., Dorwin, S. A., and Ryan, J. M. (1992). The matrix metalloproteinase pump-1 catalyzes formation of low molecular weight (pro)urokinase in cultures of normal human kidney cells. Journal of Biological Chemistry 267, 13803–13806.PubMedGoogle Scholar
  19. Mason, M. D., Allman, R., and Quibel, M. (1996). Adhesion molecules in melanoma:more than just superglue? J Royal Acad Sci 89, 393–395.Google Scholar
  20. McGeehan, G. M., Becherer, J. D., Bast, R. C., Jr., Boyer, C. M., Champion, B., Connolly, K. M., Conway, J. G., Furdon, P., Karp, S., Kidao, S., McElroy, A. B., Nichols, J., Pryzwansky, K. M., Schoenen, F., Sekut, L., Truesdale, A., Verghese, M., Warner, J., Ways, J. P. (1994). Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature 370, 558–561.PubMedCrossRefGoogle Scholar
  21. Meredith, J. E., Fazeli, B., and Schwartz, M. A. (1993). The extracellular matrix as a cell survival factor. Mol.Biol.Cell 4, 953–961.PubMedGoogle Scholar
  22. Modlich, U., Kaup, F. J., and Augustin, H. G. (1996). Cyclic angiogenesis and blood vessel regression in the ovary: blood vessel regression during luteolysis involves endothelial cell detachment and vessel occlusion. Lab Invest 74, 771–780.PubMedGoogle Scholar
  23. Murphy, G., Crockett, M. I., Stephens, P. E., Smith, B. J., and Docherty, A. J. P. (1987). Stromelysin is an activator of procollagenase — a study with natural and recombinant enzymes. Biochem. J. 248, 265–268.PubMedGoogle Scholar
  24. Pajouh, M., Nagle, R., Breathnach, R., Finch, J., Brawer, M., and Bowden, G. (1991). Expression of metalloproteinase genes in human prostate cancer. J Cancer Res Clin Oncol 117, 144–150.PubMedCrossRefGoogle Scholar
  25. Pei, D., and Weiss, S. J. (1995). Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375, 244–247.PubMedCrossRefGoogle Scholar
  26. Powell, W., and Matrisian, L. (1995). Complex roles of matrix metalloproteinases in tumor progression. In Attempts to understand metastasis formation: metastasis related molecules, U. Gunthert and W. Birchmeier, eds. (Berlin: Springer-Verlag), pp. 1–22.Google Scholar
  27. Powell, W. C., Dormann, F. E., Jr., Michen, J. M., Matrisian, L. M., Nagle, R. B., and Bowden, G. T. (1996). Matrilysin expression in the involuting rat ventral prostate. The Prostate, 159-168.Google Scholar
  28. Puente, X. S., Pendas, A. M., Llano, E., Velasco, G., and Lopez-Otin, C. (1996). Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Research 56, 944–949.PubMedGoogle Scholar
  29. Sanchez-Lopez, R., Alexander, C. M., Behrendtsen, O., Breathnach, R., and Werb, Z. (1993). Role of zinc-binding-and hemopexin domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J Biol Chem 268, 7238–7247.PubMedGoogle Scholar
  30. Sanchez-Lopez, R., Nicholson, R., Gesnel, M. C., Matrisian, L. M., and Breathnach, R. (1988). Structure-function relationships in the collagenase family member transin. J Biol Chem 263, 11892–11899.PubMedGoogle Scholar
  31. Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., and Seiki, M. (1994). A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61–64.PubMedCrossRefGoogle Scholar
  32. Sato, H., Kinoshita, T., Takino, T., Nakayama, K., and Seiki, M. (1996). Activation of a recombinant membrane type 1-metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Letters 393, 101–104.PubMedCrossRefGoogle Scholar
  33. Schulte-Hermann, R., Bursch, W., Kraupp-Grasl, B., Oberhammer, F., and Wagner, A. (1992). Programmed cell death and its protective role with particular reference to apoptosis. Toxicology Letters. 64–65 Spec No, 569–574.PubMedCrossRefGoogle Scholar
  34. Seiki, M. (1995). Membrane type-matrix metalloproteinase and tumor invasion. In Attempts to understand metastasis formation: metastasis related molecules, U. Gunthert and W. Birchmeier, eds. (Berlin: Springer-Verlag), pp. 23–32.Google Scholar
  35. Sensibar, J. A., Sutkowski, D. M., Raffo, A., Buttyan, R., Griswold, M. D., Sylvester, S. R., Kozlowski, J. M., and Lee, C. (1995). Prevention of cell death induced by tumor necrosis factor alpha in LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res 55, 2431–2437.PubMedGoogle Scholar
  36. Sympson, C. J., Alexander, C. M., Chin, J. R., Werb, Z., and Bissell, M. J. (1993). Transgenic expression of stromelysin from the WAP promoter alters branching morphogenesis during mammary gland development and results in precocious expression of milk genes. J. Cell Biol. 125:681–693.CrossRefGoogle Scholar
  37. Takino, T., Sato, H., Shinagawa, A., and Seiki, M. (1995). Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. J. Biol. Chem 270, 23013–23020.PubMedCrossRefGoogle Scholar
  38. Will, H., and Hinzmann, B. (1995). cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment. Eur. J. Biochem. 231, 602–608.PubMedCrossRefGoogle Scholar
  39. Wilson, C., and Matrisian, L. (1996). Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions. International Journal of Biochemistry and Cell Biology 28:123–136.PubMedCrossRefGoogle Scholar
  40. Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L. M., and Matrisian, L. M. (1997). Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Natl. Acad. Sci. USA. In Press.Google Scholar
  41. Witty, J. P., Wright, J. H., and Matrisian, L. M. (1995a). Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-l in transgenic mice induces unscheduled alveolar development. Molecular Biology of the Cell 6, 1287–303.PubMedGoogle Scholar
  42. Witty, J. P., Lempka, T., Coffey, R. J., Jr., and Matrisian, L. M. (1995b). Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-l transgenic mice is associated with alterations in mammary epithelial cell apoptosis. Cancer Research 55, 1401–1406.PubMedGoogle Scholar
  43. Woessner, J., and Taplin, C. (1988). Purification and properties of a small latent matrix metalloproteinase of the rat uterus. J Biol Chem 263, 16918–16925.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • William C. Powell
    • 1
  • Lynn M. Matrisian
    • 1
  1. 1.Department of Cell BiologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations