CD95 (Fas) Ligand

A Mediator of Cytotoxic T Lymphocyte-Mediated Apoptosis and Immune Privilege
  • Richard C. Duke
  • Paul B. Nash
  • Mary S. Schleicher
  • Cynthia Richards
  • Jodene Moore
  • Evan Newell
  • Alex Franzusoff
  • Donald Bellgrau


CD95 (Fas/APO-1) is a 45 kD cell surface glycoprotein and member of the tumor necrosis factor receptor superfamily (Nagata and Golstein 1995; Itoh et al. 1991; Oehm et al. 1992; Watanabe-Fukunaga et al. 1992a; Smith et al. 1994). Although CD95 is expressed in many tissues including liver, heart, gut, skin and ovaries (Watanabe-Fukunaga et al. 1992b; Leithauser et al. 1993), its major biological role appears to be in the regulation of immune responses (Nagata and Golstein 1995; Cohen and Eisenberg 1992; Vignaux and Golstein, 1994). Lpr mice which lack the ability to express functional CD95 accumulate large numbers of abnormal T and B cells in their peripheral lymphoid organs and develop autoimmune disease (Cohen and Eisenberg 1992; Cohen and Eisenberg 1991; Roths et al. 1984). The abnormal lymphocytes in these mice express markers found on activated lymphocytes and it appears that autoimmunity develops as a result of an inability to eliminate autoreactive T and B cells.


Sertoli Cell Immune Privilege Kidney Capsule Tumor Necrosis Factor Receptor Superfamily CD95L Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alderson, M.R., Tough, T.W., Davis-Smith, T., Braddy, S., Falk, B., Schooley, K.A., Goodwin, R.G., Smith, C.A., Ramsdell, F., and Lynch, D.H. 1995. Fas ligand mediates activation-induced cell death in human T lymphocytes. J. Exp. Med. 181, 71–77.PubMedCrossRefGoogle Scholar
  2. Alderson, M.R., Tough, T.W., Braddy, S., Davis-Smith, T., Roux, E., Schooley, K., Miller, R.E., and Lynch, D.H. 1994. Regulation of apoptosis and T cell activation by Fas-specific mAb. Int. Immunol. 6, 1799–1806.PubMedCrossRefGoogle Scholar
  3. Anel, A., Buferne, M., Boyer, C., Schmitt-Verhulst, A.M., and Golstein, P. 1994. T cell receptor-induced Fas ligand expression in cytotoxic T lymphocyte clones is blocked by protein tyrosine kinase inhibitors and cyclosporin A. Eur. J. Immunol. 24, 2469–2476.PubMedCrossRefGoogle Scholar
  4. Bellgrau, D., Gold, D., Selawry, H., Moore, J., Franzusoff, A., and Duke, R.C. 1995. A role for CD95 ligand in preventing graft rejection. Nature. 377, 630–632.PubMedCrossRefGoogle Scholar
  5. Brunner, T., Mogil, R.J., LaFace, D., Yoo, N.J., Mahboubi, A., Echeverri, F., Martin, S.J., Force, W.R., Lynch, D.H., Ware, C.F., and Green, D.R. 1995. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature. 373, 441–444.PubMedCrossRefGoogle Scholar
  6. Cameron, D.F., Whittington, K., Schultz, R.E. and Selawry, H.P. 1990. Successful islet/abdominal testis transplantation does not require Leydig cells. Transplantation 50, 649–653.PubMedCrossRefGoogle Scholar
  7. Chu, J.L., Ramos, P., Rosendorff, A., Nikolic-Zugic, J., Lacy, E., Matsuzawa, A., and Elkon, K.B. 1995. Massive upregulation of the Fas ligand in lpr and gld mice: implications for Fas regulation and the graft-versus-host disease-like wasting syndrome. J. Exp. Med. 181, 393–398.PubMedCrossRefGoogle Scholar
  8. Cohen, RL. and Eisenberg, R.A. 1992. The lpr and gld genes in systemic autoimmunity: life and death in the Fas lane. Immunol. Today. 13, 427–428.PubMedCrossRefGoogle Scholar
  9. Cohen, P.L. and Eisenberg, R.A. 1991. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269.PubMedCrossRefGoogle Scholar
  10. Daniel, P.T. and Krammer, P.H. 1994. Activation induces sensitivity toward APO-1 (CD95)-mediated apoptosis in human B cells. J. Immunol. 152, 5624–5632.PubMedGoogle Scholar
  11. Debatin, K.M., Goldmann, C.K., Bamford, R., Waldmann, T.A., and Krammer, P.H. 1990. Monoclonal-antibodymediated apoptosis in adult T-cell leukaemia. Lancet. 335, 497–500.PubMedCrossRefGoogle Scholar
  12. Dhein, J., Walczak, H., Baumler, C., Debatin, K.M., and Krammer, P.H. 1995. Autocrine T-cell suicide mediated by APO-l/(Fas/CD95). Nature. 373, 438–441.PubMedCrossRefGoogle Scholar
  13. Duke R.C., Chervenak, R., and Cohen, J.J. 1983. Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis. Proc. Natl. Acad. Sci. USA 80, 6361–6365.PubMedCrossRefGoogle Scholar
  14. Duke, R.C. 1989. Self-recognition by T cells. I. Bystander killing of target cells bearing syngeneic MHC antigens. J. Exp. Med. 170, 59–71.PubMedCrossRefGoogle Scholar
  15. Duke, R.C. 1992. Apoptosis in cytotoxic T cells and their targets. Sem. Immunol. 4, 407–412.Google Scholar
  16. Duke, R.C. and Cohen, J.J. 1992. Cell death and apoptosis. In: Current Protocols in Immunology Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. and Strober, W., editors. Greene Publishing Associates, Brooklyn NY, pp. 3.17.1–3.17.16.Google Scholar
  17. Duke, R.C., Zulauf, R., Nash, P.B., Zheng, L.M., Young, J.D.E. and Ojcius, D. 1994. Cytolysis mediated by ionophores and pore-forming agents: role of intracellular calcium in apoptosis. FASEB J. 8, 237–246.PubMedGoogle Scholar
  18. Galle, P.R., Hofmann, W.J., Walczak, H., Schaller, H., Otto, G., Stremmel, W., Krammer, PH., and Runkel, L. 1995. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J. Exp. Med. 182, 1223–1230.PubMedCrossRefGoogle Scholar
  19. Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R., and Ferguson, T.A. 1995. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 270, 1189–1192.PubMedCrossRefGoogle Scholar
  20. Hao, L.M., Wang, Y, Gill, R.G., LaRosa, F.G., Talmage, D.W., and Lafferty, K.J. 1990. Role of lymphokines in islet allograft rejection. Transplantation 49, 609–614.PubMedCrossRefGoogle Scholar
  21. Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S., Sameshima, M., Hase, A., Seto, Y, and Nagata, S. 1991. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 66, 233–243.PubMedCrossRefGoogle Scholar
  22. Ju, ST., Panka, D.J., Cui, H., Ettinger, R., el-Khatib, M., Sherr, D.H., Stanger, B.Z., and Marshak-Rothstein, A. 1995. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature. 373, 444–448.PubMedCrossRefGoogle Scholar
  23. Ju, ST., Cui, H., Panka, D.J., Ettinger, R., and Marshak-Rothstein, A. 1994. Participation of target Fas protein in apoptosis pathway induced by CD4+ Th1 and CD8+ cytotoxic T cells. Proc. Natl. Acad. Sci. U. S. A. 91, 4185–4189.PubMedCrossRefGoogle Scholar
  24. Kagi, D., Vignaux, F., Ledermann, B., Burki, K., Depraetere, V, Nagata, S., Hengartner, H., and Golstein, P. 1994. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science. 265, 528–530.PubMedCrossRefGoogle Scholar
  25. Kayagaki, N., Kawasaki, A., Ebata, T., Ohmoto, H., Ikeda, S., Inoue, S., Yoshino, K., Okumura, K., and Yagita, H. 1995. Metalloproteinase-mediated release of human Fas ligand. J. Exp. Med. 182, 1777–1783.PubMedCrossRefGoogle Scholar
  26. Lacronique, V., Mignon, A., Fabre, M., Viollet, B., Rouquet, N., Molina, T., Porteu, A., Henrion, A., Bouscary, D., Variet, P., Joulin, V., and Kahn, A. 1996. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nat. Med. 2, 80–86.PubMedCrossRefGoogle Scholar
  27. Lanzavecchia, A. 1986. Is the T-cell receptor involved in T-cell killing? Nature 319, 778–80.PubMedCrossRefGoogle Scholar
  28. Lau, HT., Yu, M., Fontana, A., and Stoeckert, C.J. 1996. Prevention of Islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273, 109–112.PubMedCrossRefGoogle Scholar
  29. Leithauser, F., Dhein, J., Mechtersheimer, G., Koretz, K., Bruderlein, S., Henne, C., Schmidt, A., Debatin, K.M., Krammer, P.H., and Moller, P. 1993. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab. Invest. 69, 415–429.PubMedGoogle Scholar
  30. Luciani, M.F. and Golstein, P. 1994. Fas-based dl0S-mediated cytotoxicity requires macromolecular synthesis for effector cell activation but not for target cell death. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 345, 303–309.PubMedCrossRefGoogle Scholar
  31. Mariani, S.M., Matiba, B., Baumler, C., and Krammer, P.H. 1995. Regulation of cell surface APO-1/Fas (CD95) ligand expression by metalloproteases. Eur. J. Immunol. 25, 2303–2307.PubMedCrossRefGoogle Scholar
  32. Mita, E., Hayashi, N., Iio, S., Takehara, T., Hijioka, T., Kasahara, A., Fusamoto, H., and Kamada, T. 1994. Role of Fas ligand in apoptosis induced by hepatitis C virus infection. Biochem. Biophys. Res. Commun. 204, 468–474.PubMedCrossRefGoogle Scholar
  33. Miyawaki, T., Uehara, T., Nibu, R., Tsuji, T., Yachie, A., Yonehara, S., and Taniguchi, N. 1992. Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood. J. Immunol. 149, 3753–3758.PubMedGoogle Scholar
  34. Nagata, S. and Golstein, P. 1995. The Fas death factor. Science. 267, 1449–1456.PubMedCrossRefGoogle Scholar
  35. Oehm, A., Behrmann, I., Falk, W., Pawlita, M., Maier, G., Klas, C., Li-Weber, M., Richards, S., Dhein, J., Trauth, B.C., Ponsting, H. and Krammer, P.H. 1992. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J. Biol. Chem. 267, 10709–10715.PubMedGoogle Scholar
  36. Ogasawara, J., Watanabe-Fukunaga, R., Adachi, M., Matsuzawa, A., Kasugai, T., Kitamura, Y, Itoh, N., Suda, T., and Nagata, S. 1993. Lethal effect of the anti-Fas antibody in mice. Nature. 364, 806–809.PubMedCrossRefGoogle Scholar
  37. Owen-Schaub, L.B., Yonehara, S., Crump, W.L., and Grimm, E.A. 1992. DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell Immunol. 140, 197–205.PubMedCrossRefGoogle Scholar
  38. Ramsdell, F., Seaman, M.S., Miller, R.E., Picha, K.S., Kennedy, M.K., and Lynch, D.H. 1994. Differential ability of Th1 and Th2 T cells to express Fas ligand and to undergo activation-induced cell death. Int. Immunol. 6, 1545–1553.PubMedCrossRefGoogle Scholar
  39. Roths, J.B., Murphy, E.D., and Eicher, E.M. 1984. A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice. J. Exp. Med. 159, 1–20.PubMedCrossRefGoogle Scholar
  40. Rouvier, E., Luciani, M.F., and Golstein, P. 1993. Fas involvement in Ca(2+)-independent T cell-mediated cyto-toxicity. J. Exp. Med. 177, 195–200.PubMedCrossRefGoogle Scholar
  41. Russell, J.H. and Wang, R. 1993. Autoimmune gld mutation uncouples suicide and cytokine/proliferation pathways in activated, mature T cells. Eur. J. Immunol. 23, 2379–2382.PubMedCrossRefGoogle Scholar
  42. Selawry, H.P. and Cameron, D.F. 1993. Sertoli cell-enriched fractions in successful islet cell transplantation. Cell Transplant. 2, 123–129.PubMedGoogle Scholar
  43. Selawry, H.P. and Whittington, K. 1984. Extended allograft survival of islets grafted into intra-abdominally placed testis. Diabetes 33, 405–406.PubMedCrossRefGoogle Scholar
  44. Selawry, H.P., Whittington, K.B. and Bellgrau, D. 1989. Abdominal intratesticular islet-xenograft survival in rats. Diabetes 38 Suppl 1, 220–223.PubMedGoogle Scholar
  45. Smith, C.A., Farrah, T., and Goodwin, R.G. 1994. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 76, 959–962.PubMedCrossRefGoogle Scholar
  46. Smith, R.A. and Baglioni, C 1987. The active form of tumor necrosis factor is a trimer. J. Biol. Chem. 262, 6951–6954.PubMedGoogle Scholar
  47. Sobel, E.S., Kakkanaiah, V.N., Kakkanaiah, M., Cohen, P.L., and Eisenberg, R.A. 1995. Co-infusion of normal bone marrow partially corrects the gld T-cell defect. Evidence for an intrinsic and extrinsic role for Fas ligand. J. Immunol. 154, 459–464.PubMedGoogle Scholar
  48. Sobel, E.S., Kakkanaiah, V.N., Cohen, P.L., and Eisenberg, R.A. 1993. Correction of gld autoimmunity by co-infusion of normal bone marrow suggests that gld is a mutation of the Fas ligand gene. Int. Immunol. 5, 1275–1278.PubMedCrossRefGoogle Scholar
  49. Stalder, T., Hahn, S., and Erb, P. 1994. Fas antigen is the major target molecule for CD4+ T cell-mediated cyto-toxicity. J. Immunol. 152, 1127–1133.PubMedGoogle Scholar
  50. Strasser, A. 1995. Apoptosis. Death of a T cell. Nature. 373, 385–386.PubMedCrossRefGoogle Scholar
  51. Suda, T., Okazaki, T., Naito, Y., Yokota, T., Arai, N., Ozaki, S., Nakao, K., and Nagata, S. 1995. Expression of the Fas ligand in cells of T cell lineage. J. Immunol. 154, 3806–3813.PubMedGoogle Scholar
  52. Suda, T. and Nagata, S. 1994. Purification and characterization of the Fas-ligand that induces apoptosis. J. Exp. Med. 179, 873–879.PubMedCrossRefGoogle Scholar
  53. Suda, T., Takahashi, T., Golstein, P., and Nagata, S. 1993. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 75, 1169–1178.PubMedCrossRefGoogle Scholar
  54. Takahashi, T., Tanaka, M., Brannan, C.I., Jenkins, N.A., Copeland, N.G., Suda, T., and Nagata, S. 1994a. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 76, 969–976.PubMedCrossRefGoogle Scholar
  55. Takahashi, T., Tanaka, M., Inazawa, J., Abe, T., Suda, T., and Nagata, S. 1994b. Human Fas ligand: gene structure, chromosomal location and species specificity. Int. Immunol. 6, 1567–1574.PubMedCrossRefGoogle Scholar
  56. Tanaka, M., Suda, T., Haze, K., Nakamura, N., Sato, K., Kimura, F., Motoyoshi, K., Mizuki, M., Tagawa, S., Ohga, S., Hatake, K., Drummond, A.H., and Nagata, S. 1996. Fas ligand in human serum. Nat. Med. 2, 317–322.PubMedCrossRefGoogle Scholar
  57. Trauth, B.C., Klas, C., Peters, A.M., Matzku, S., Moller, P., Falk, W., Debatin, K.M., and Krammer, P.H. 1989. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science. 245, 301–305.PubMedCrossRefGoogle Scholar
  58. Vaux, D.L. 1995. Immunology. Ways around rejection. Nature. 377, 576–577.PubMedCrossRefGoogle Scholar
  59. Vignaux, F., Vivier, E., Malissen, B., Depraetere, V, Nagata, S., and Golstein, P. 1995. TCR/CD3 coupling to Fasbased cytotoxicity. J. Exp. Med. 181, 781–786.PubMedCrossRefGoogle Scholar
  60. Vignaux, F. and Golstein, P. 1994. Fas-based lymphocyte-mediated cytotoxicity against syngeneic activated lymphocytes: a regulatory pathway?. Eur. J. Immunol. 24, 923–927.PubMedCrossRefGoogle Scholar
  61. Watanabe, D., Suda, T., Hashimoto, H., and Nagata, S. 1995. Constitutive activation of the Fas ligand gene in mouse lymphoproliferative disorders. EMBO J. 14, 12–18.PubMedGoogle Scholar
  62. Watanabe-Fukunaga, R., Brannan, C.I., Itoh, N., Yonehara, S., Copeland, N.G., Jenkins, N.A., and Nagata, S. 1992b. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J. Immunol. 148, 1274–1279.PubMedGoogle Scholar
  63. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A., and Nagata, S. 1992a. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 356, 314–317.PubMedCrossRefGoogle Scholar
  64. Wickelgren, I. 1996. Muscling transplants into mice. Science 273, 35.CrossRefGoogle Scholar
  65. Yonehara, S., Ishii, A., and Yonehara, M. 1989. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747–1756.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Richard C. Duke
    • 1
    • 2
    • 3
  • Paul B. Nash
    • 4
  • Mary S. Schleicher
    • 5
  • Cynthia Richards
    • 6
  • Jodene Moore
    • 2
  • Evan Newell
    • 5
    • 7
  • Alex Franzusoff
    • 8
  • Donald Bellgrau
    • 2
    • 6
  1. 1.Division of Medical Oncology Department of MedicineUniversity of Colorado Health Sciences CenterUSA
  2. 2.Department of ImmunologyUCHSCUSA
  3. 3.CERES Pharmaceuticals, LtdDenverUSA
  4. 4.Division of Infectious Disease, Department of MedicineUCHSCUSA
  5. 5.Immunology CoreUniversity of Colorado Cancer Center, UCHSCUSA
  6. 6.Barbara Davis Center for Childhood Diabetes, UCHSCUSA
  7. 7.McGill UniversityMontrealCanada
  8. 8.Department of Cellular and Structural BiologyUCHSCDenverUSA

Personalised recommendations