Genetic Regulation of Apoptosis in the Mouse Thymus

  • Barbara A. Osborne
  • Sallie W. Smith
  • Kelly A. McLaughlin
  • Lisa Grimm
  • Grant Morgan
  • Rebecca Lawlor
  • Richard A. Goldsby


The role of apoptosis in the maintenance of homeostasis in cells of the immune system recently has become apparent1,2. Indeed some of the best characterized examples of apoptosis are found in the immune system. For example, apoptosis is the mechanism used during negative selection in the thymus to remove self-reactive T cells3−5. Thymic T cells also are quite susceptible to induction of apoptosis by either glucocorticoids or ionizing radiation6,7. Additionally, more recent data indicate that peripheral lymphocytes undergo apoptosis following a variety of different stimuli and, in many instances, cell death in activated peripheral T and B cells may be traced to Fas/FasL interactions8−11. Peripheral T cells also have been shown to susceptible to induction of cell death by TNFα12.


Negative Selection Proteasome Inhibitor Reactive Oxygen Intermediate Proteasome Function Thymocyte Apoptosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ellis, R., J. Yuan, and H. R. Horvitz, Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7:663 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    Schwartz, L. M. and B. A. Osborne, Programmed cell death, apoptosis and killer genes. Immunol. Today 14:582(1993).PubMedCrossRefGoogle Scholar
  3. 3.
    Swat, W., L. Ignatowicz, H. von Boehmer, and P. Kisielow, Clonal deletion of immature CD4+ CD8+ thy-mocytes in suspension culture by extrathymic antigen-presenting cells. Nature 351:150 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    Smith, C. A., G. Williams, R. Kingston, E. J. Jenkinson, and J. T. Owen, Antibodies to CD3/T-cell receptor complex induces death by apoptosis in immature T cells in thymic culture. Nature 337:181 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    Murphy, K. M., A. B. Heimberger, and D. Y. Loh, Induction by antigen of intrathymic apoptosis of CD4+ CD8+ TCRlo thymocytes in vivo. Science 250:1720 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    Wyllie, A. H., Glucocorticoid induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    Sellins, K. and J.J. Cohen, Gene induction by y-irradiation leads to DNA fragmentation in lymphocytes. J. Immunol. 139:3199(1987).PubMedGoogle Scholar
  8. 8.
    Dhein, J., H. Walczak, C. Baumler, K-M. Debatin, and P. H. Krammer, Autocrine T-cell suicide mediated by APO-l/(Fas/CD95). Nature 373:438 (1995).PubMedCrossRefGoogle Scholar
  9. 9.
    Brunner, T., R. J. Mogil, D. LaFace, N.J. Yoo, A. Mahoubi, F. Echeverri, S.J. Martin, W.R. Force, D. H. Lynch, C.F. Ware and D.R. Green, Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373:441 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    Ju, S-T, D. J. Panka, H. Cul, R. Ettinger, M. El-Khatib, D. H. Sherr, B. Z. Stanger, and A. Marshak-Rothstein, Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373:444(1995).PubMedCrossRefGoogle Scholar
  11. 11.
    Rothstein TL, Wang JKM, Panka, DJ, Foote LC., Wang Z, Stanger B, Cul H, Ju S-T, Marshak-Rothstein A: Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature 374:163 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ: Induction of apoptosis in mature T cells by tumor necrosis factor. Nature 377:348 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    Vacchio, M., V. Papadopoulus, and J. D. Ashwell, Steroid production in the thymus: implications for thymocyte selection. J. Exp. Med. 179:1835 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    King, L.B., M.S. Vacchio, R. Hunziker, D. H. Margulies, and J. D. Ashwell, A targeted glucocorticoid receptor antisense transgene increases thymocyte apoptosis and alters thymocyte development. Immunity 5:647(1995).CrossRefGoogle Scholar
  15. 15.
    White, J., A. Herman, A. M. Pullen, R. Kubo, J. Kappler, and P. Marrack, The Vβ-speciflc superantigen staphylococcal enterotoxin B: Stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56:27(1989).PubMedCrossRefGoogle Scholar
  16. 16.
    Kisielow, P., H. Bluthmann, U. D. Staerz, M. Steinmetz, and H. von Boehmer, Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+, 8+ thymocytes. Nature 333:742 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    Sha, W., C. Nelson, R. Newberry, D. Kranz, J. Russell, and D. Y Loh, Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature 336:73 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    Berg, L., G. Frank and M.M. Davis, The effects of MHC gene dosage and allelic variation on T cell receptor selection. Cell 60:1043 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    MacDonald, H. R. and R. K. Lees, Programmed death of autoreactive thymocytes. Nature 343:624 (1990).CrossRefGoogle Scholar
  20. 20.
    Winslow, G. M., M. T. Scherer, J. W. Kappler, and P. Marrack, Detection and biochemical characterization of the mouse mammary tumor virus 7 superantigen (Mls-la). Cell 71:719 (1992).PubMedCrossRefGoogle Scholar
  21. 21.
    Schwartz, L. M., The role of cell death genes during development. BioEssays 13:389 (1991).PubMedCrossRefGoogle Scholar
  22. 22.
    Cohen, J. J. and R. Duke, Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J. Immunol 132:38 (1984).PubMedGoogle Scholar
  23. 23.
    Shi, Y, M. Szaly, L. Paskar, M. Boyer, B. Singh, and D. R. Green, Activation-induced cell death in T cell hybridomas is due to apoptosis. J. Immunol. 144:3326 (1990).PubMedGoogle Scholar
  24. 24.
    Osborne, B. A., S.W. Smith, Z.-G. Liu, K. McLaughlin, L. Grimm and L. M. Schwartz. 1994. Identification of genes induced during apoptosis in T lymphocytes. Immunological Reviews, Vol. 141, 301–320.CrossRefGoogle Scholar
  25. 25.
    Lau, L. and D. Nathans, Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: Coordinate regulation with c-fos or c-myc. Proc. Natl. Acad. Sci. (USA) 84:1182 (1987).CrossRefGoogle Scholar
  26. 26.
    Watson, M. A. and J. Milbrandt, The NGFI-B gene, a transcriptionally inducible member of the steroid receptor gene superfamily: genomic structure and expression in rat brain after seizure induction. Mol. Cell. Biol. 9:4213(1989).PubMedGoogle Scholar
  27. 27.
    Liu, Z.-G., S. W. Smith, K. A. McLauglin, L. M. Schwartz, and B. A. Osborne, Apoptotic signals through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature 36:281 (1994).CrossRefGoogle Scholar
  28. 28.
    Woronicz, J. D., B. Calnan, V. Ngo, and A. Winoto, Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 367:277 (1994).PubMedCrossRefGoogle Scholar
  29. 29.
    Calnan, B.J., S. Szychowski, F. K-M. Chan, D. Cado, and A. Winoto, A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity 3:273 (1995).PubMedCrossRefGoogle Scholar
  30. 30.
    Weih, F., Ryseck, R.P., Chen, L., and R. Bravo. Apoptosis of nur77/N 10-transgenic thymocytes involves the Fas/Fas ligand pathway. Proc. Natl. Acad. Sci. 93:5533 (1996).PubMedCrossRefGoogle Scholar
  31. 31.
    Ramakrishnan, N. and G. Catravas, N-(2-mercaptoethyl)-l,3-propanediamine (WR-1065) protects thymocytes from programmed cell death. J. Immunol 148:1817 (1992).PubMedGoogle Scholar
  32. 32.
    Mayer, M. and M. Nobel, N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc. Natl. Acad. Sci. USA 91:7496 (1994).PubMedCrossRefGoogle Scholar
  33. 33.
    Iwata, M., M. Mukai, Y. Nakai, and R. Iseki, Retinoic acid inhibits activation-induced apoptosis in T cellhybridoms and thymocytes. J. Immunol. 149:3302 (1992).PubMedGoogle Scholar
  34. 34.
    Sandstrom, P. A., M. Mannie, and T. M. Buttke, Inhibition of activation-induced death in T cell hybridomas by thiol antioxidative stress as a mediator of apoptosis. J. Leukoc. Biol. 55:221 (1994).PubMedGoogle Scholar
  35. 35.
    Hockenbery, D., Z. Oltvai, X. Yin, C. Milliman, and S. Korsmeyer, Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241 (1993).PubMedCrossRefGoogle Scholar
  36. 36.
    McLaughlin, K. A., Osborne, B.A. and R. A. Goldsby. The role of oxygen in thymocyte apoptosis. Eur. J. Immunol., 26:1170 (1996).PubMedCrossRefGoogle Scholar
  37. 37.
    Coux, O., Tanaka, K and Goldberg, A.L. Structure and functions of the 20S and 26S proteasomes. Ann. Rev. Biochem., in press (1996).Google Scholar
  38. 38.
    Rock, K.L, Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D. and Goldberg, A.L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761 (1994).PubMedCrossRefGoogle Scholar
  39. 39.
    Grimm, L. A., Goldberg, A. L., Poirier, G.G., Schwartz, L.M. and B.A. Osborne. Proteasomes play an essential role in thymocyte apoptosis. EMBO J. 15:3835 (1996).PubMedGoogle Scholar
  40. 40.
    Fenteany, G., Standaert R.F., Lane, W.S., Choi, S., Corey E.J., Schreiber, S.L. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 269.726 (1995).Google Scholar
  41. 41.
    Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G. and Earnshaw, W.C. Cleavage of poly(ADP-ribose)polymerase by a proteinase with properties like ICE. Nature 371:346 (1994).PubMedCrossRefGoogle Scholar
  42. 42.
    Imajohomi, S., Kawaguchi, T., Sugiyama, S., Tanaka, K., Omura, S. and Kikuchi, H. Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells. Biochem. & Biophys. Res. Comm. 217:1070(1995).CrossRefGoogle Scholar
  43. 43.
    Glotzer, M. Murray, A. and Kirschner, M. Cyclin is degraded by the ubiquitin pathway. Nature 349:132 (1991).PubMedCrossRefGoogle Scholar
  44. 44.
    Pagano, M., Tarn, S.W., Theodoras, A.M., Beer-Romero, Del Sal, G., Chau, V., Yew, P.R., Draetta, G.F. and Rolfe, M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682 (1995).PubMedCrossRefGoogle Scholar
  45. 45.
    Nicholson, D.W., Ali., A., Thornberry, N., Vailancourt, J.P., Ding, C.K., Gallant, M., Gareau, Y, Griffin, P.R., Labelle, M., Lazebnik, Y.A., Munday, N.A., Raju, S. M., Smulson, M.E., Yamin, T.-T, Yu, V. and Miller, D.K. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37 (1995).PubMedCrossRefGoogle Scholar
  46. 46.
    Lowe, S, E. M. Schmitt, S. W. Smith, B. A. Osborne, and T. Jacks, p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847 (1993).PubMedCrossRefGoogle Scholar
  47. 47.
    Clarke, A.R., C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A. Wyllie, Thymocyte apoptosis induced by p53-dependent pathways. Nature 362:849 (1993).PubMedCrossRefGoogle Scholar
  48. 48.
    Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren, Wild-type p53 induces apoptosis of myeloid leukemic cells that is inhibited by interleukin-6. Nature 352:345 (1991).PubMedCrossRefGoogle Scholar
  49. 49.
    Jacks, T., L. Remington, B. O. Williams, E. Schmidt, S. Halacimi, R. T. Bronson, and R. A. Weinberg, Tumor spectrum analysis in p53 mutant mice. Curr. Biol. 4:1 (1994).PubMedCrossRefGoogle Scholar
  50. 50.
    Dieken, E. S. and R. L. Miesfeld, Transcriptional transactivation functions localized to the glucocorticoid receptor N terminus are necessary for steroid induction of lymphocyte apoptosis. Mol. Cell. Biol. 92:589 (1992).Google Scholar
  51. 51.
    Owens, G. P., W. Hahn, and J. J. Cohen, Identification of mRNAs associated with programmed cell death in immature thymocytes. Mol. Cell. Biol. 11:4177 (1991).PubMedGoogle Scholar
  52. 52.
    Waga, S., G. J. Hannon, D. Beach, and B. Stillman, The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:520 (1994).CrossRefGoogle Scholar
  53. 53.
    Caelles, C., A. Helmberg, and M. Karin, p53-dependent apoptosis in the absence of transcriptional activation of p53 target genes. Nature 370:220 (1994).PubMedCrossRefGoogle Scholar
  54. 54.
    Attardi, L.D., Lowe, S.W., Brugarolas, J., and T. Jacks. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 15:3693 (1996).PubMedGoogle Scholar
  55. 55.
    Shi, Y., J. M. Glynn, L. J. Guilbert, T. G. Cotter, R. Bissonette, and D. R. Green, Role for c-myc in activation-induced apoptotic death in T cell hybridomas. Science 257:212 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Barbara A. Osborne
    • 1
    • 2
  • Sallie W. Smith
    • 1
  • Kelly A. McLaughlin
    • 2
  • Lisa Grimm
    • 2
  • Grant Morgan
    • 1
  • Rebecca Lawlor
    • 1
  • Richard A. Goldsby
    • 3
  1. 1.Department of Veterinary and Animal SciencesUniversity of MassachusettsAmherstUSA
  2. 2.Program in Molecular and Cellular BiologyUniversity of MassachusettsAmherstUSA
  3. 3.Department of BiologyAmherst CollegeAmherstUSA

Personalised recommendations