Stress Resistance in Lepidopteran Insect Cells

  • Thomas M. Koval


Insects represent the most populous group of animals on Earth. Over 75% (over 932,000 out of approximately 1,250,000) of all described animal species are insects. Insects occupy and play an important role in virtually every terrestrial ecosystem and many aquatic ecosystems. From worldwide economic and human health perspectives, approximately 20% of all crops are lost because of insects and one in six individuals has an insect-borne illness. Clearly, from both prevalence and relevance points of view, insects merit our attention and study.


Insect Cell Excision Repair Stress Resistance Insect Cell Line Pyrimidine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, G. J., and LaChance, L. E., 1976, Dominant lethal mutations in insects with holokinetic chromosomes: Irradiation of pink bollworm sperm, Ann. EntomoL Soc. Am. 69: 971–976.Google Scholar
  2. Bianchi, N. O., and Lopez-Larraza, D. M., 1991, DNA damage and repair induced by bleomycin in mammalian and insect cells, Environ. Moi. Mutagen. 17: 63–68.CrossRefGoogle Scholar
  3. Blocher, D., and Pohlit, W., 1982, DNA double strand breaks in Ehrlich ascites tumour cells at low doses of X-rays. II. Can cell death be attributed to double strand breaks? Int. J. Radiat. Biol. 42: 329–338.CrossRefGoogle Scholar
  4. Bond, V. P., Fliedner, T. M., and Archambeau, J. O., 1965, Mammalian Radiation Lethality, Academic Press, New York.Google Scholar
  5. Bonner, J. A., Christianson, T. H., and Koval, T. M., 1991, Correlation of doxorubicin sensitivity with the stabilization of DNA topoisomerase II complexes in an extremely doxorubicin-resistant lepidopteran insect cell line, Proc. Am. Assoc. Cancer Res. 32: 338.Google Scholar
  6. Bradley, M. O., and Kohn, K. W., 1979, X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution, Nucleic Acids Res. 7: 793–804.PubMedCrossRefGoogle Scholar
  7. Casarett, A. P., 1968, Radiation Biology, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  8. Drabek, R., Koval, T. M., Stamato, T., Vannais, D., and Waldren, C., 1993, Transfection of CHO and CHOXR1 with DNA from TN-368 lepidopteran cells: Selection for transformants hyperresistant to ‘y-rays, Abstracts of the 41st Annual Meeting of the Radiation Research Society, p. 139.Google Scholar
  9. Ducoff, H. S., 1972, Causes of death in irradiated adult insects, Biol. Rev. 47: 211–240.Google Scholar
  10. Gassner, G., and Klemetson, D. J., 1974, A transmission electron microscope examination of hemipteran and lepidopteran gonial centromeres, Can. J. Genet. Cytoi. 16: 457–464.Google Scholar
  11. Gerke, C. W., Zumwalt, R. W., Stalling, D. L., and Wall, L. L., 1968, Quantitative gas-liquid chromatography of amino acids in proteins and biological substances, Analytical Biochemistry Laboratories, Inc., Columbia, MO.Google Scholar
  12. Gerweck, L. E., and DeLaney, T. F., 1984, Persistence of thermotolerance in slowly proliferating plateau-phase cells, Radiat. Res. 97: 365–372.PubMedCrossRefGoogle Scholar
  13. Grace, T. D. C., and Brzostowski, H. W., 1966, Analysis of the amino acids and sugars in an insect cell culture medium during cell growth, J. Insect Physiol. 12: 625–633.CrossRefGoogle Scholar
  14. Henle, K. J., and Dethlefsen, L. A., 1978, Heat fractionation and thermotolerance: A review, Cancer Res. 38: 1843–1851.Google Scholar
  15. Henle, K. J., and Leeper, D. B., 1979, Effects of hyperthermia on macromolecular synthesis in Chinese hamster ovary cells, Cancer Res. 39: 2665–2674PubMedGoogle Scholar
  16. Hughes-Schrader, S., and Schrader, F., 1961, The kinetochore of the Hemiptera, Chromosoma 12: 327–350.PubMedCrossRefGoogle Scholar
  17. Jackie, H., and Kalthoff, K., 1980, Photoreversible UV-inactivation of messenger RNA in an insect embryo (Smittia spec. Chironomidae, Diptera), Photochem. Photobiol. 32: 749–761.CrossRefGoogle Scholar
  18. Kern, D. H., Krag, D. N., Kauffman, G. L., Morton, D. L., and Storm, F. K., 1988, Thermal resistance of human malignant melanoma modulated by prostaglandin E2, J. Surg. Oncology 37: 60–64.CrossRefGoogle Scholar
  19. Konze-Thomas, B., Levinson, J. W., Maher, V. M., and McCormick, J. J., 1979, Correlation among the rates of dimer excision, DNA repair replication, and recovery of human cells from potentially lethal damage induced by ultraviolet radiation, Biophys. J. 28: 315–326.PubMedCrossRefGoogle Scholar
  20. Koval, T. M., 1983a, Intrinsic resistance to the lethal effect of X-irradiation in in-sect and arachnid cells, Proc. Natl. Acad. Sci. USA 80: 4752–4755.CrossRefGoogle Scholar
  21. Koval, T. M., 1983b, Radiosensitivity of cultured insect cells: I. Lepidoptera, Radiat. Res. 96: 118–126.Google Scholar
  22. Koval, T. M., 1983c, Radiosensitivity of cultured insect cells: II. Diptera, Radiat Res. 96: 127–134.CrossRefGoogle Scholar
  23. Koval, T. M., 1984, Multiphasic survival response of a radioresistant lepidopteran cell line, Radiat. Res. 98: 642–648.PubMedCrossRefGoogle Scholar
  24. Koval, T. M., 1986a, Enhanced survival by photoreactivation and liquid-holding following UV damage of TN-368 insect cells, Mutat. Res. 166: 149–156.Google Scholar
  25. Koval, T. M., 1986b, Inducible repair of ionizing radiation damage in higher eukaryotic cells, Mutat. Res. 173: 291–293.PubMedCrossRefGoogle Scholar
  26. Koval, T. M., 1987, Photoreactivation of UV damage in cultured Drosophila cells, Experientia 43: 445–446.PubMedCrossRefGoogle Scholar
  27. Koval, T. M., 1988, Enhanced recovery from ionizing radiation damage in a lepidopteran insect cell line, Radiat. Res. 115: 413–420.Google Scholar
  28. Koval, T. M., 1991, Recovery from exposure to DNA-damaging chemicals in radiation-resistant insect cells, Mutat. Res. 262: 219–225.Google Scholar
  29. Koval, T. M., 1996, Cold hardiness of cultured lepidopteran cells, In Vitro Cell. Deu. Biol. 32: 37A.Google Scholar
  30. Koval, T. M., and Kazmar, E. R, 1988, DNA double-strand break repair in eukaryotic cell lines having radically different radiosensitivities, Radiat. Res. 113: 268–277.PubMedCrossRefGoogle Scholar
  31. Koval, T. M., and Suppes, D., 1992a, Heat resistance and thermotolerance in a radiation-resistant cell line, Int. J. Radiat. BioL 61: 425–431.PubMedCrossRefGoogle Scholar
  32. Koval, T. M., and Suppes, D., 1992b, Survival response of TN-368 lepidopteran cells to psoralins and UVA light, In Vitro Cell. Dey. BioL 28: 88a.Google Scholar
  33. Koval, T. M., Myser, W. C., and Hink, W. F., 1975, Effects of X-irradiation on cell division, oxygen consumption, and growth medium pH of an insect cell line cultured in vitro, Radiat. Res. 64: 524–532.PubMedCrossRefGoogle Scholar
  34. Koval, T. M., Myser, W. C., and Hink, W. F., 1976, The effect of x-irradiation on amino acid utilization in cultured insect cells, Radiat. Res. 67: 305–313.PubMedCrossRefGoogle Scholar
  35. Koval, T. M., Hart, R. W., Myser, W. C., and Hink, W. F., 1977, A comparison of survival and repair of UV-induced DNA damage in cultured insect versus mammalian cells, Genetics 87: 513–518.PubMedGoogle Scholar
  36. Koval, T. M., Myser, W. C., Hart, R. W., and Hink, W. F., 1978, Comparison of survival and unscheduled DNA synthesis between an insect and a mammalian cell line following X-ray treatments, Mutat. Res. 49: 431–435.Google Scholar
  37. Koval, T. M., Hart, R. W., Myser, W. C., and Hink, W. F., 1979, DNA single-strand break repair in cultured insect and mammalian cells after X-irradiation, Int. J. Radiat. BioL 35: 183–188.CrossRefGoogle Scholar
  38. Labandeira, C. C., and Sepkoski, J. J., 1993, Insect diversity in the fossil record, Science 261: 310–315.PubMedCrossRefGoogle Scholar
  39. LaChance, L. E., and Graham, C. K., 1984, Insect radiosensitivity: Dose curves and dose-fractionation studies of dominant lethal mutations in the mature sperm of 4 insect species, Mutat. Res. 127: 49–59.PubMedCrossRefGoogle Scholar
  40. LaChance, L. E., Schmidt, C. H., and Bushland, R. C., 1967, Radiation-induced sterilization, in: Pest Control: Biological, Physical, and Selected Chemical Methods (W. W. Kilgore and R. L. Doutt, eds.), Academic Press, New York, pp. 147–196.Google Scholar
  41. Lee, Y. J., Perlaky, L., Dewey, W. C., Armour, E. P., and Cony, P. M., 1990, Differences in thermotolerance induced by heat or sodium arsenite: Cell killing and inhibition of protein synthesis, Radiat. Res. 121: 295–303.PubMedCrossRefGoogle Scholar
  42. Lepock, J. R., Frey, H. E., Heynen, M. P., Nishio, J., Waters, B., Ritchie, K. P., and Kruuv, J., 1990, Increased thermostability of thermotolerant CHL V79 cells as determined by differential scanning calorimetry, J. Cell. Physiol. 142: 628–634.PubMedCrossRefGoogle Scholar
  43. Muraoka, N., Okuda, A., and Ikenaga, M., 1980, DNA photoreactivating enzyme from silkworm, Photochem. Photobiol. 32: 193–197.CrossRefGoogle Scholar
  44. Nielsen, O. S., and Overgaard, J., 1982, Influence of time and temperature on the kinetics of thermotolerance in L1A2 cells in vitro, Cancer Res. 42: 4190–4196.Google Scholar
  45. O’Brien, R. D., and Wolfe, L. S., 1964 Radiation, Radioactivity and Insects, Academic Press, New York.Google Scholar
  46. Oesterreich, S., Benndorf, R. and Bielka, H., 1990, The expression of the growth-related 25kDa protein (p25) of Ehrlich ascites tumor cells is increased by hypothermic treatment (heat shock), Biomed. Biochim. Acta 49: 219–226.PubMedGoogle Scholar
  47. Perlitsch, M., and Kelner, A., 1953, The reduction by reactivating light of the frequency of phenocopies induced by ultraviolet light in Drosophila melanogaster, Science 118: 165–166.CrossRefGoogle Scholar
  48. Rand, A., and Koval, T. M., 1994, Coordinate regulation of proteins associated with radiation resistance in cultured insect cells, Radiat. Res. 138: S13 - S16PubMedCrossRefGoogle Scholar
  49. Schrader, F., 1947, The role of the kinetochore in the chromosomal evolution of the Heteroptera and Homoptera, Evolution 1: 134–142.CrossRefGoogle Scholar
  50. Styer, S. C., and Griffiths, T. D., 1992, Effect of UVC light on growth, incorporation of thymidine, and DNA chain elongation in cells derived from the Indian meal moth and the cabbage looper, Radiat. Res. 130: 72–78.PubMedCrossRefGoogle Scholar
  51. Suomalainen, E., 1953, The kinetochore and the bivalent structure in the Lepidoptera, Hereditas 39: 88–96.CrossRefGoogle Scholar
  52. Swenson. P. A., Schenley, R. L., and Boyle, J. M., 1971, Interference with respiratory control by ionizing radiations in Escherichia coli B/r, Int. J. Radiat. Biol. 20: 223.Google Scholar
  53. Swenson, P. A., Ives, J. E., and Schenley, R. L., 1975, Photoprotection of E. coli Bin Respiration, growth, macromolecular synthesis and repair of DNA, Photochem. Photobiol. 21: 235–241.PubMedCrossRefGoogle Scholar
  54. Todo, T., Takemori, H., Ryo, H., Ihara, M., Matsunaga, T., Nikaido, O., Soto, K., and Nomura, T., 1993, A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6–4) photoproducts, Nature 361: 371–374.PubMedCrossRefGoogle Scholar
  55. Tomasovic, S. P., and Koval, T. M., 1985, Relationship between cell survival and heat-stress protein synthesis in a Drosophila cell line, Int. J. Radiat. Biol. 48: 635–650.CrossRefGoogle Scholar
  56. Tomasovic, S. P., Steck, P. A., and Heitzman, D., 1983, Heat-stress proteins and thermal resistance in rat mammary tumor cells, Radiat. Res. 95: 399–413.PubMedCrossRefGoogle Scholar
  57. Trosko, J. E., and Wilder, K., 1973, Repair of UV-induced pyrimidine dimers in Drosophila melanogaster cells in vitro, Genetics 73: 297–302.PubMedGoogle Scholar
  58. Warters, R. L., 1988, Hyperthermia blocks DNA processing at the nuclear matrix, Radiat. Res. 115: 258–272.PubMedCrossRefGoogle Scholar
  59. Warters, R. L., and Stone, O. L., 1983, Macromolecule synthesis in HeLa cells after thermal shock, Radiat. Res. 96: 646–652.PubMedCrossRefGoogle Scholar
  60. Watson, K., Dunlop, G., and Cavicchioli, R. R., 1984, Mitochondrial and cytoplasmic protein syntheses are not required for heat shock acquisition of ethanol and thermotolerance in yeast, FEBS Lett. 172: 299–302.PubMedCrossRefGoogle Scholar
  61. Weichselbaum, R. R., Nove, J., and Little, J. B., 1978, Deficient recovery from potentially lethal radiation damage in ataxia telangiectasia and xeroderma pigmentosum, Nature 271: 261–262.PubMedCrossRefGoogle Scholar
  62. White, M. J. D., 1973, Animal Cytology and Evolution, Cambridge University Press, London.Google Scholar
  63. Wolf, K. W., 1994, The unique structure of lepidopteran spindles, Int. Rev. Cytol. 152: 1–48.Google Scholar
  64. Wong, R. S. L., and Dewey, W. C., 1982, Molecular studies on the hyperthermie inhibition of DNA synthesis in Chinese hamster ovary cells, Radiat. Res. 92: 370–395.PubMedCrossRefGoogle Scholar
  65. Wyatt, G. R., 1961, The biochemistry of insect hemolymph, Annu. Rev. EntomoL 6: 75–102.CrossRefGoogle Scholar
  66. Yanagimoto, Y., and Mitsuhashi, J., 1996, Production of rotenone-inactivating substance(s) by rotenone-resistant insect cell line, In Vitro Cell. Dey. Biol. Anim. 32: 399–402.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Thomas M. Koval
    • 1
  1. 1.National Council on Radiation Protection and MeasurementsBethesdaUSA

Personalised recommendations