Local and Systemic Plant Defensive Responses to Infection

  • R. Hammerschmidt


Plants are subject to infection by a wide range of pathogen types that include fungi, protists, bacteria, viruses, and nematodes (Agrios, 1988). Although many thousands of plant pathogens exist in nature, only a few are capable of successfully infecting and establishing a disease-causing compatible (susceptible) interaction with any specific type of plant. However, in many cases where the compatible interaction is established, devastating epidemics resulting in large losses of plants and plant products can develop. One only needs to consider the potato blight that caused serious losses and famine in Ireland and Europe in the 1840s to realize how severe plant disease can become.


Salicylic Acid Hypersensitive Response Phenylalanine Ammonia Lyase Systemic Resistance Plant Pathol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad, L. R., Durzo, M. P., Liu, D., Narasimhan, M. L., Reuveni, M., Zhu J. K., Niu,X. M., Singh, N. K., Hasegawa, P. M., and Bressan, R. A., 1996, Antifungal activity of tobacco osmotin has specificity and involves plasma-membrane permeabilization, Plant Sci. 118: 11–23.CrossRefGoogle Scholar
  2. Agrios, G. N., 1988, Plant Pathology, 3rd ed., Academic Press, San Diego.Google Scholar
  3. Aist, J. R., 1983, Structural responses as resistance mechanisms. in: The Dynamics of Host Defence ( J. A. Bailey and B. J. Deverall, eds.), Academic Press, Sydney, pp. 33–70.Google Scholar
  4. Alexander, D., Goodman, R. M., Gut-Rella, M, Glascock, C., Weyman, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E., and Ryals, J., 1993, Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la, Proc. Natl. Acad. Sci. USA 90: 7327–7331.PubMedCrossRefGoogle Scholar
  5. Appel, H. M., 1993, Phenolics in ecological interactions: The importance of oxidation, J. Chem. Ecol. 19: 1521–1552.CrossRefGoogle Scholar
  6. Baker, C. J., and Orlandi, E. W., 1995, Active oxygen in plant pathogenesis, Annu. Rev. Phytopathol. 33: 299–321.CrossRefGoogle Scholar
  7. Bi, Y.-M., Kenton, P., Mur, L., Darby, R. L., and Draper, K., 1995, Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression, Plant J. 8: 235–245.PubMedCrossRefGoogle Scholar
  8. Bowling, S. A., Guo, A., Gordon, A. S., Klessig, D. F., and Dong, X., 1994. A mutation in Arabidopsis that leads to constitutive expression of systemic resistance, Plant Cell 6: 1845–1857.Google Scholar
  9. Bowyer, P., Clarke, B. R., Lunness, P., Daniel, M. J., and Osbourn, A. E., 1995, Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme, Science 267: 371–374.PubMedCrossRefGoogle Scholar
  10. Brisson, L. F., Tenhaken, R., and Lamb, C., 1994, Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance, Plant Cell 6: 1703–1712.PubMedGoogle Scholar
  11. Broglie, K., Chet, I., Holliday, M., Cressman, R., Riddle, P., Knowlton, S., Mauvias, C. J., and Broglie, R., 1991, Transgenic plants with enhanced resistance to fungal pathogens, Science 254: 1194–1197.PubMedCrossRefGoogle Scholar
  12. Cao, H., Bowling, S. A., Gordon, A. S., and Dong, X., 1994, Characterization of an Arabidopsis mutant that is non-responsive to inducers of systemic acquired resistance, Plant Cell 6: 1583–1592.PubMedGoogle Scholar
  13. Chen, Z., and Klessig, D. F., 1991, Identification of a soluble salicylic-acid binding protein that may function in signal transduction in the plant disease resistance response, Proc. Natl. Acad. Sci. USA 88: 8179–8183.PubMedCrossRefGoogle Scholar
  14. Chen, Z., Silva, H., and Klessig, D. F., 1993, Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid, Science 262: 1883 1885.Google Scholar
  15. Croft, K. P. C., Juttner, F., and Slusarenko, A. J., 1993, Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris L. leaves inoculated with Pseudomonas syringae pv. phaseoiicola Plant Physiol. 101: 13–24.Google Scholar
  16. Cutt, J. R., and Klessig, D. F., 1992, Pathogenesis-related proteins, in: Plant Gene Research ( F. Meins and T. Boller, eds.), Springer-Verlag, Berlin, pp. 181–216.Google Scholar
  17. Dann, E. K., and Deverall, B. J., 1995, Effectiveness of systemic resistance in bean against foliar and soil-borne pathogens as induced by biological and chemical means, Plant Pathos. 44: 458–466.CrossRefGoogle Scholar
  18. Dann, E. K., and Deverall, B. J., 1996, 2,6-Dichioroisonicotinic acid (INA) induced resistance in green beans to the rust pathogen, Uromyces appendiculatus, under field conditions, Aust. Plant Pathos. 25: 199–204.Google Scholar
  19. Dean, R. A., and Kuc, J., 1986a, Induced systemic protection in cucumber: The source of the “signal,” Physiol. Mol. Plant Pathol. 28: 227–233.CrossRefGoogle Scholar
  20. Dean, R. A., and Kuc, J., 1986b, Induced systemic protection in cucumber Time of production and movement of the signal, Phytopathology 76: 966–970.CrossRefGoogle Scholar
  21. Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., and Ryals, J., 1994, A central role of salicylic acid in plant disease resistance, Science 266: 1247 1250.Google Scholar
  22. Dietrich, R. A., Delaney, T.P., Uknes, S. J., Ward, E. R, Ryals, J. A., and Dangl, J. L., 1994, Arabidopsis mutants simulating disease resistance response, Cell 77: 565–577.PubMedCrossRefGoogle Scholar
  23. Dixon, R. A., Harrison, M. J., and Lamb, C. J., 1994, Early events in the activation of plant defense responses, Annu. Rev. Phytopathol. 32: 479–501.CrossRefGoogle Scholar
  24. Enkerli, J., Gisi, U., and Mosinger, E., 1993, Systemic acquired resistance to Phytophthora infestans in tomato and the role of pathogenesis related proteins, Physiol. Mol. Plant Pathol. 43: 161–171.CrossRefGoogle Scholar
  25. Essenberg, M., Pierce, M. L., Cover, E. C., Hamilton, B., Richardson, P. E., and Scholes, V. E., 1992, A method for determining phytoalexin concentrations in fluorescent hypersensitively necrotic cells in cotton leaves, Physiol. Moi. Plant Pathol. 41: 101–109.CrossRefGoogle Scholar
  26. Farmer, E. E., 1994, Fatty acid signalling in plants and their associated microorganisms, Plant Moi. Biol. 26: 1423–1437.CrossRefGoogle Scholar
  27. Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H., and Ryals, J., 1996, A benzothiadiazole derivative induces systemic acquired resistance in tobacco, Plant J. 10: 61–70.CrossRefGoogle Scholar
  28. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmarm, H., and Ryals, J., 1993, Requirement of salicylic acid for the induction of systemic acquired resistance, Science 261: 754–766.PubMedCrossRefGoogle Scholar
  29. Glazebrook, J., and Ausubel, F. M., 1994, Isolation of phytoalexin deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens, Proc. Natl. Acad. Sci. USA 91: 8955–8959.CrossRefGoogle Scholar
  30. Godoy, G., Steadman, J. R., Dickman, M. B., and Dam, R., 1990, Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseoius vulg arts, PhysioL Mol. Plant PathoL 37: 179–191.CrossRefGoogle Scholar
  31. Goodman, R. N., and Novacki, A. J., 1994, The Hypersensitive Reaction in Plants to Pathogens, APS Press, St. Paul, p. 244.Google Scholar
  32. Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H., and Ryals, J., 1996, Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat, Plant Cell 8: 629–643.PubMedGoogle Scholar
  33. Greenberg, J. T., Guo, A., Klessig, D. F., and Ausubel, F. M., 1994, Programmed cell death in plants: A pathogen triggered response activated coordinately with multiple defense functions, Cell 77: 551–563.PubMedCrossRefGoogle Scholar
  34. Hahn, R, Reif, H. J., Krause, E., Langebartels, R, Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P. H., Stocker, R. H., and Stenzel, K., 1993, Disease resistance results from foreign phytoalexin expression in a novel plant, Nature 361: 153–156.CrossRefGoogle Scholar
  35. Hammerschmidt, R., 1993, The nature and generation of systemic signals induced by pathogens, arthropod herbivores and wounds, Adv. Plant PathoL 10: 307–337.Google Scholar
  36. Hammerschmidt, R., and Becker, J. S., 1997, Acquired resistance to disease. Hortic. Rev. 18: 247–289.Google Scholar
  37. Hammerschmidt, R., and Kuc, J., 1982, Lignification as a mechanism for induced systemic resistance in cucumber, PhysioL Plant PathoL 20: 61–71.CrossRefGoogle Scholar
  38. Hammerschmidt, R., and Kuc, J. (eds.), 1995, Induced Resistance to Disease in Plants, Kluwer, Dordrecht.Google Scholar
  39. Hammerschmidt, R. and Schultz, J. C., 1996, Multiple defenses and signals in plant defense against pathogens and herbivores, Recent Adv. Phytochern. 30: 121–154.Google Scholar
  40. Hammerschmidt, R., Nuckles, E. M., and Kuc, J., 1982, Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium, Physioi. Plant Pathol. 20: 73–82.CrossRefGoogle Scholar
  41. Hammerschmidt, R., Bonnen, A. M., Baker, K. K., and Bersgstom, G. C., 1985, Association of epidermal lignification with nonhost resistance of cucurbits to fungi, Can. J. Bot. 63: 2393–2398.CrossRefGoogle Scholar
  42. Heath, M. C., 1994, Evolution of resistance to fungal parasitism in natural ecosystems, New Phytoi. 119: 331–343.CrossRefGoogle Scholar
  43. Heath, M. C., 1995, Thoughts on the role and evolution of induced resistance in natural ecosystems, and its relationship to other types of plant defenses against disease, in: Induced Resistance to Disease in Plants ( R Hammerschmidt and J. Kuc, eds.), Kluwer, Dordrecht, pp. 141–151.Google Scholar
  44. Kessmann, H., Staub, T., Hofmann, C., Maetzke, T., Herzog, J., Ward, E., Uknes, S., and Ryals, J., 1994, Induction of systemic acquired disease resistance in plants by chemicals, Annu. Rev. Phytopathol. 32: 439–459.CrossRefGoogle Scholar
  45. Klessig, D. A., and Malamy, J., 1994, The salicylic acid signal in plants, Plant Mol. Biol. 26: 1439–1458.PubMedCrossRefGoogle Scholar
  46. Kuc, J., 1995a, Induced systemic resistance—an overview, in: Induced Resistance to Disease in Plants ( R Hammerschmidt and J. Kuc, eds.), Kluwer, Dordrecht, pp. 169–175.CrossRefGoogle Scholar
  47. Kuc, J., 1995b, Phytoalexins, stress metabolism and disease resistance in plants, Annu. Rev. PhytopathoL 33: 275–297.CrossRefGoogle Scholar
  48. Lamb, C., 1996, A ligand-receptor mechanism in plant-pathogen recognition, Science 274: 2038–2039.CrossRefGoogle Scholar
  49. Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J., 1996, Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired-resistance signal transduction pathway. Plant Journal 10: 71–82.PubMedCrossRefGoogle Scholar
  50. Lazarovits, G., and Ward, E.W.B., 1982, Polyphenoloxidase activity in soybean hypocotyls at sites inoculated with Phytophthora megasperma f.sp. glycinea, Physiol. Plant Pathos. 21: 227–236.CrossRefGoogle Scholar
  51. Leach, J. E., and White, F. F., 1996, Bacterial avirulence genes, Annu. Rev. Phytopathol. 34: 153–179.CrossRefGoogle Scholar
  52. Leon, J., Yalpani, N., Raskin, I., and Lawton, M. A., 1993, Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco, Plant Physiol. 103: 323–328.PubMedGoogle Scholar
  53. Leon, J., Lawton, M. A., and Raskin, I., 1995a, Hydrogen-peroxide stimulates salicylic acid biosynthesis in tobacco, Plant Physiol. 108: 1673–1678.PubMedGoogle Scholar
  54. Leon, J., Shulaev, V., Yalpani, N., Lawton, M. A., and Raskin, I., 1995b, Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis, Proc. Natl. Acad. Sci. USA 92: 10413–10417.PubMedCrossRefGoogle Scholar
  55. Levine, A., Tenhaken, R., Dixon, R. A., and Lamb, C., 1994, 11,02 from the oxidative burst orchestrates the plant hypersensitive disease resistance response, Cell 79: 583–593.Google Scholar
  56. Levine, A., Pennell, R. I., Alverez, M. E., Palmer, R, and Lamb, C, 1996, Calcium-mediated apoptosis in a plant hypersensitive disease resistance response, CWT. Biol. 6: 427–437.Google Scholar
  57. Linthorst, H. J. M., 1991, Pathogenesis-related proteins in plants, Crit. Rev. Plant Sci. 10: 123–150.CrossRefGoogle Scholar
  58. Liu, D., Raghothama, K. G., Hasegawa, P. M., and Bressan, R. A., 1994, Osmotin overexpression in potato delays development of disease symptoms, Proc. Nati. Acad. Sci. USA 91: 1888–1892.CrossRefGoogle Scholar
  59. Maher, E. A., Bate, N. J., Ni, W., Elkind, Y., Dixon, R. A., and Lamb, C. J., 1994, Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products, Proc. Natl. Acad. Sci. USA 91: 7802–7806.PubMedCrossRefGoogle Scholar
  60. Malamy, J., Carr, J. P., Klessig, D. F., and Raskin, I., 1990, Salicylic acid—A likely endogenous signal in the resistance response of tobacco to tobacco mosaic virus, Science 250: 1002–1004.PubMedCrossRefGoogle Scholar
  61. Mauch-Mani, B., and Slusarenko, A., 1996, Systemic acquired resistance in Arabidopsis thaliana induced by a predisposing infection with a pathogenic isolate of Fusarium oxysporum, Mol. Plant-Microbe Interact. 7: 378–383.CrossRefGoogle Scholar
  62. Maurhofer, M., Hase, C., Meuwly, P., Métraux, J. P., and Defago, G., 1994, Induction of systemic resistance of tobacco to tobacco necrosis virus by root-colonizing Pseudomonas fluorescens strain CHAO: Influence of the gacA gene and of pyoverdine production, Phytopathology 84: 139–146.CrossRefGoogle Scholar
  63. Mayama, S., and Tani, T., 1982, Microspectrophotometric analysis of the location of avenalumin accumulation in response to fungal infection, Physiol. Plant Pathos. 21: 141–149.CrossRefGoogle Scholar
  64. Mayama, S., Bordin, A. P. A., Morikawa, T., Tampo, H., and Kato, H. 1995. Association of avenalumin accumulation with co-segregation of victorin sensitivity and crown rust resistance in oat lines carrying the Pc-2 gene, Physiol. Mol. Plant Pathol. 46: 263–274.Google Scholar
  65. Meeley, R. B., Johal, G. S., Briggs, S. P., and Walton, J. D., 1992, A biochemical phenotype for a disease resistance gene of maize. Plant Cell 4: 71–77.PubMedGoogle Scholar
  66. Mehdy, M. C., 1994, Active oxygen species in plant defense against pathogens, Plant Physiol. 105: 467–472.PubMedGoogle Scholar
  67. Métraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., and Inverardi, B., 1990, Increase in salicylic acid at the onset of systemic acquired resistance in cucumber, Science 250: 1004–1006.PubMedCrossRefGoogle Scholar
  68. Métraux, J. P., Ahl-Goy, P., Staub, T., Speich, J., Steinmann, A., Ryals, J., and Ward, E., 1991, Induced systemic resistance in cucumber in response to 2,6dichloroisonicotinic acid and pathogens, in: Advances in the Molecular Genetics of Plant Microbe Interactions, (H. Hennecke and D. P. S. Verma, eds.), Kluwer, Dordrecht, Vol. 1, pp. 432–439.Google Scholar
  69. Meuwly, P., Molders, W., Buchala, A., and Métraux, J. P., 1995, Local and systemic biosynthesis of salicylic acid in infected cucumber plants, Plant Physiol. 109: 1107–1114.PubMedGoogle Scholar
  70. Michelmore, R. W., 1995, Molecular approaches to manipulation of disease resistance, Annu. Rev. Phytopathol. 33: 393–427.CrossRefGoogle Scholar
  71. Mills, P. R., and Wood, R. K. S., 1984, The effects of polyacrylic acid, acetyl salicylic acid and salicylic acid on resistance of cucumber to Colletotrichum lagenarium, Phytopathol. Z. 111: 209–216.CrossRefGoogle Scholar
  72. Mittler, R, and Lam, E., 1995, In situ detection of nDNA fragmentation during a differentiation of tracheary elements in higher plants, Plant Physiol. 108: 489–493.Google Scholar
  73. Moersbacher, B. M., Noll, U., Gorrichon, L., and Reisner, H. J., 1990, Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust, Plant Physiol. 93: 465–470.CrossRefGoogle Scholar
  74. Miilders, W., Buchala, T., and Métraux, J. P., 1996, Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants, Plant Physiol. 112: 787–792.Google Scholar
  75. Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes, S., Kessmann, H., and Ryals, J., 1995, Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J. 8: 227–233.CrossRefGoogle Scholar
  76. Nicholson, R. L., and Hammerschmidt, R., 1992, Phenolic compounds and their role in disease resistance, Annu. Rev. PhytopathoL 30: 369–389.CrossRefGoogle Scholar
  77. Niemira, B. A., Hammerschmidt, R., and Safir, G. R., 1996, Postharvest suppression of potato dry rot (Fusarium sambucinum) in prenuclear minitubers by arbuscular mycorrhizal fungal inoculum, Am. Potato J. 73: 509–515.CrossRefGoogle Scholar
  78. Osbourn, A. E., Clarke, B. R., Lunnes, P., Scott, P. R., and Daniels, M. J., 1994, An oat species lacking avenacin is susceptible to infection by Gaurnanomyces graminis var. tritici, Physiol. Mol. Plant PathoL 45: 457–467.CrossRefGoogle Scholar
  79. Pallas, J. A., Paiva, N. L., Lamb, C. J., and Dixon, R. A., 1996, Tobacco plants epigenetically suppressed in phenylalanine ammonia lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus, Plant J. 10: 281–293.CrossRefGoogle Scholar
  80. Paxton, J. D., 1981, Phytoalexins—A working redefinition, PhytopathoL Z. 101: 106–109.CrossRefGoogle Scholar
  81. Peng, M., and Kuc, J., 1992, Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks, Phytopathology 82: 696–699.CrossRefGoogle Scholar
  82. Pierce, M. L., Coover, E. C., Richardson, P. E., Scholes, V. E., and Essenberg, M., 1996, Adequacy of cellular phytoalexin concentrations in hypersensitively responding cotton leaves, Physiol. Mol. Plant Pathol. 48: 305–324.CrossRefGoogle Scholar
  83. Pierpont, W. S., 1994, Salicylic acid and its derivatives in plants: Medicines, metabolism and messenger molecules, Adv. Bot. Res. 20: 164–235.Google Scholar
  84. Pieterse, C. M. J., Vanwees, S. C. M., Hoffland, E., Vanpelt, J. A., and Van Loon, L. C., 1996, Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related protein gene expression, Plant Cell 8: 1225–1237.PubMedGoogle Scholar
  85. Rasmussen, J. B., Hammerschmidt, R., and Zook, M. N., 1991, Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae, Plant PhysioL 97: 1342–1347.PubMedCrossRefGoogle Scholar
  86. Rasmussen, J. B., Smith, J. A., Williams, S, Burkhardt, W., Ward, E., Somerville, S., Ryals, J., and Hammerschmidt, R., 1995, cDNA cloning and systemic expression of an acidic peroxidase associated with systemic acquired resistance in cucumber, PhysioL Mol. Plant PathoL 46: 389–400.Google Scholar
  87. Ride, J. P., 1978, The role of cell wall alterations in resistance to fungi, Ann. Appl. Biol. 89: 302–306.Google Scholar
  88. Ryals, J., Uknes, S., and Ward, E., 1994, Systemic acquired resistance, Plant Physiol. 104: 1109–1112.PubMedGoogle Scholar
  89. Ryerson, D. E., and Heath, M. C., 1996, Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatments, Plant Cell 8: 393–402.PubMedGoogle Scholar
  90. Schäfer, W., 1994, Molecular mechanisms of fungal pathogenicity in plants, Annu. Rev. PhytopathoL 32: 461–477.CrossRefGoogle Scholar
  91. Scofield, S. R., Tobias, C. M., Rathjen, J. P., Chang, J. H., Lavelle, D. T., Michel-more, R. W., and Staskawicz, B. J., 1996, Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato, Science 274: 2063–2065.PubMedCrossRefGoogle Scholar
  92. Shulaev, V., Leon, J., and Raskin, I., 1995, Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell 7: 1691–1701.PubMedGoogle Scholar
  93. Smith, J. A., and Hammerschmidt, R., 1988, Comparative study of acidic peroxidases associated with induced resistance in cucumber, muskmelon and watermelon, Physiol. Mol. Plant Pathol. 33: 255–261.CrossRefGoogle Scholar
  94. Smith, J. A., Fulbright, D. W., and Hammerschmidt, R, 1991, Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. syringae, Physiol. Mol. Plant PathoL 38: 223–235.CrossRefGoogle Scholar
  95. Smith, M. J., Mazzola, E. P., Sims, J. J., Midland, S. L., Keen, N. T., Burton, V., and Stayton, M. M., 1993, The syringolides: Bacterial c-glycosyl lipids that trigger plant disease resistance, Tetrahedron Lett. 34: 223–226.CrossRefGoogle Scholar
  96. Snyder, B. A., and Nicholson, R. L. 1990. Synthesis of phytoalexins in sorghum as a site specific response to fungal ingress, Science 248: 1637–1639.PubMedCrossRefGoogle Scholar
  97. Snyder, B. A., Leite, B., Hipskind, J., Butler, L. G., and Nicholson, R. L., 1991, Accumulation of sorghum phytoalexins induced by Colletotrichumgraminicola at the infection site, PhysioL Mol. Plant Pathos. 39: 463–470.CrossRefGoogle Scholar
  98. Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., and Jones, J. D. G., 1995, Molecular genetics of plant disease resistance, Science 268: 661–667.PubMedCrossRefGoogle Scholar
  99. Stein, B. D., Klomparens, K., and Hammerschmidt, R, 1993, Histochemistry and ultrastructure of the induced resistance response of cucumber plants to Colletotrichum lagenarium, J. Phytopathol. 137: 177–188.CrossRefGoogle Scholar
  100. Stermer, B. A., 1995, Molecular regulation of induced systemic resistance, in: Induced Resistance to Disease in Plants ( R. Hammerschmidt and J. Kué, eds.), Kluwer, Dordrecht, pp. 111–140.CrossRefGoogle Scholar
  101. Sutherland, M. W., 1991, The generation of oxygen radicals during host responses to infection, Physiol. Mol. Plant Pathol. 39: 79–94.CrossRefGoogle Scholar
  102. Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y., and Martin, G. B., 1996, Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase, Science 274: 2060–2063.PubMedCrossRefGoogle Scholar
  103. Thompson, C., Dunwell, J. M., Johnstone, C. E., Lay, V., Ray, J., Schmitt, M., Watson, H., and Nisbet, G., 1995, Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase, Euphytica 85: 169–172.CrossRefGoogle Scholar
  104. Tsuji, J., Jackson, E. P., Gage, D. A., Hammerschmidt, R., and Somerville, S. C., 1992, Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive response to Pseudomonas syringae pv. syringae, Plant Physiol. 98: 1304–1309.PubMedCrossRefGoogle Scholar
  105. Tuzun, S., and Kloepper, J., 1995, Practical application and implementation of induced resistance, in: Induced Resistance to Disease in Plants ( R. Hammerschmidt and J. Kué, eds.), Kluwer, Dordrecht, pp. 152–168.CrossRefGoogle Scholar
  106. Van Kan, L. A. L., VandenAckeveken, G. F. J. M., and de Wit, P. J. M., 1991, Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fuluum, caused agent of tomato leaf mold, Mol. Plant-Microbe Interact. 4: 52–59.PubMedCrossRefGoogle Scholar
  107. van Loon, L. C., Pterpoint, W. S., Boller, T., and Conejero, V., 1994, Recommendations for naming plant pathogenesis-related proteins, Plant Mol. Biol. Rep. 12: 245–264.CrossRefGoogle Scholar
  108. Vernooij, B., Friedrich, L., Morse, A., Reist, R, Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals, J., 1994, Salicylic acid is not the trans-located signal responsible for inducing systemic acquired resistance but is required in signal transduction, Plant Cell 6: 959–965.Google Scholar
  109. Wang, H., Li, J., Bostock, R. M., and Gilchrist, D. G., 1996, Apoptosis: A functional paradigm for programmed cell death induced by a host-selective phytotoxin and invoked during development, Plant Cell 8: 375–391.PubMedGoogle Scholar
  110. Ward, E., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Métraux, J. P., and Ryals, J. A., 1991, Coordinate gene activity in response to agents that induce systemic acquired resistance, Plant Cell 3: 1085–1094.PubMedGoogle Scholar
  111. Weyman, K., Hunt, M., Uknes, S., Neuenschwender, U., Lawton, K., Steiner, H. Y., and Ryals, J., 1995, Suppression and restoration of lesion formation in Arabidopsis lsd mutants, Plant Cell 7: 2013–2022.Google Scholar
  112. White, R. F., 1979, Acetylsalicylic acid (aspirin) induces resistance to tobacco maosaic virus in tobacco, Virology 99: 410–412.PubMedCrossRefGoogle Scholar
  113. Yalpani, N., Leon, J., Lawton, M. A., and Raskin, I., 1993, Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco, Plant Physiol. 103: 315–321.PubMedGoogle Scholar
  114. Zeyen, R. J., Bushnell, W. R., Carver, T. L. W., Robbins, M. P., Clark, T. A., Boyles, D. A., and Vance, C. P., 1995, Inhibiting phenylalanine ammonia lyase and cinnamyl-alcohol dehydrogenase suppresses Mlal (HR) but not mlo5 (non-HR) barley powdery mildew resistances. Physiol. Mol. Plant Pathol. 47: 119–140.CrossRefGoogle Scholar
  115. Zook, M., and Hammerschmidt, R., 1997, Origin of the thiazole ring in camalexin, a phytoalexin from Arabidopsis thaliana, Plant Physiol. 113: 463–468.PubMedCrossRefGoogle Scholar
  116. Zook, M., Hohn, T., Bonnen, A., Tsuji, J., and Hammerschmidt, R., 1996a, Characterization of novel sesquiterpenoid biosynthesis in tobacco expressing a fungal sesquiterpene synthase, Plant Physiol. 112: 311–318.PubMedGoogle Scholar
  117. Zook, M., Johnson, K., Hohn, T., and Hammerschmidt, R, 1996b, Structural characterization of 15-hydroxytrichodiene, a sesquiterpenoid produced by transformed tobacco cell suspension cultures expressing a trichodiene synthase gene from Fùsarium sporotrichioides, Phytochemistry 43: 1235–1237.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • R. Hammerschmidt
    • 1
  1. 1.Department of Botany and Plant PathologyMichigan State UniversityEast LansingUSA

Personalised recommendations