Desiccation Tolerance in Mosses

  • Melvin J. Oliver
  • Andrew J. Wood


To gain a full understanding of stress-inducible processes in plants, especially at the cellular level, it is often of major benefit to develop simple model plants for study. This is especially true if one is interested in how plants tolerate extremely stressful conditions that impact directly on the protoplasm of individual cells, e.g., desiccation. In addition, many crop species have little capacity for abiotic stress tolerance and thus the genetic information necessary for expanding their tolerance may not be present or exploitable. Model plants that exhibit stress-tolerant traits are useful tools for elucidating the processes involved in tolerance and may provide unique genetic material that can impact breeding programs for improved crop stress management.


Desiccation Tolerance Resurrection Plant Rapid Desiccation Polysomal Fraction Craterostigma Plantagineum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpert, P., and Oechel, W. C., 1987, Comparative patterns of net photosynthesis in an assemblage of mosses with contrasting microdistributions, Am. J. Bot. 741: 1787–1796.CrossRefGoogle Scholar
  2. Bag, J., 1988, Messenger ribonucleoprotein complexes and translational control of gene expression, Mol. Genet. (Life Sci. Adv.) 7: 117–123.Google Scholar
  3. Bartels, D., and Nelson, D., 1994, Approaches to improve stress tolerance using molecular genetics, Plant Cell Environ. 17: 659–667.CrossRefGoogle Scholar
  4. Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D., and Salamini, F., 1990, Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum, Planta 181: 27–34.CrossRefGoogle Scholar
  5. Bartels, D., Hanke, C., Schneider, K., Michel, D., and Salamini, F., 1992, A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA, EMBO J. 11: 277–2778.Google Scholar
  6. Bartels, D., Alexander, R., Schneider, K., Elster, R., Velasco, R., Alamillo, J., Bianchi, G., Nelson, D., and Salamini, F., 1993, Desiccation-related gene products analyzed in a resurrection plant and in barley embryos, in: Plant Responses to Cellular Dehydration during Environmental Stress ( T. J. Close and E. A. Bray, eds.), American Society of Plant Physiologists, Rockville, MD, pp. 119–127.Google Scholar
  7. Bewley, J. D., 1972, The conservation of polyribosomes in the moss Tortula ruralis during total desiccation, J. Exp. Bot. 23: 692–698.CrossRefGoogle Scholar
  8. Bewley, J. D., 1973a, Polyribosomes conserved during desiccation of the moss Tortula ruralis are active, Plant Physiol. 51: 285–288.PubMedCrossRefGoogle Scholar
  9. Bewley, J. D., 1973b, Desiccation and protein synthesis in the moss Tortula ruralis, Can. J. Bot. 51: 203–206.CrossRefGoogle Scholar
  10. Bewley, J. D., 1979, Physiological aspects of desiccation-tolerance, Annu. Rev. Plant Physiol. 30: 195–238.Google Scholar
  11. Bewley, J. D., and Krochko, J. E., 1982, Desiccation-tolerance, in: Encyclopedia of Plant Physiology (O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler, eds.), Springer-Verlag, Berlin, Vol. 12B, pp. 325–378.Google Scholar
  12. Bewley, J. D., and Oliver, M. J., 1992, Desiccation-tolerance in vegetative plant tissues and seeds: Protein synthesis in relation to desiccation and a potential role for protection and repair mechanisms, in: Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cell, ’for and Molecular Levels ( C. B. Osmond and G. Somero, eds.), Springer-Verlag, Berlin, pp. 141–160.Google Scholar
  13. Bewley, J. D., and Pacey, J., 1978, Desiccation-induced ultrastructural changes in drought-sensitive and drought-tolerant plants, in: Dry Biological Systems (J. H. Crowe and J. S. Clegg, eds.), Academic Press, New York, pp. 53–73.Google Scholar
  14. Bewley, J. D., Halmer, P., Krochko, J. E., and Winner. W. E., 1978, Metabolism of a drought-tolerant and a drought-sensitive moss: Respiration, ATP synthesis and carbohydrate status, in: Dry Biological Systems ( J. H. Crowe and J. S. Clegg, eds.), Academic Press, New York, pp. 185–203.Google Scholar
  15. Bewley, J. D., Reynolds, T. L., and Oliver, M. J., 1993, Evolving Strategies in the adaptation to desiccation, in: Plant Responses to Cellular Dehydration during Environmental Stress ( T. J. Close and E. A. Bray, eds.), American Society of Plant Physiologists, Rockville, MD, pp. 193–201.Google Scholar
  16. Bliss, R. D., Platt-Aloia, K. A., and Thomson, W. W., 1984, Changes in plasmalemma organization in cowpea radicle during imbibition in water and NaC1 solutions, Plant Cell Environ. 7: 601–606.Google Scholar
  17. Bopp, M., and Werner, 0., 1993, Abscisic acid and desiccation-tolerance in mosses, Bot. Acta. 106: 103–106.Google Scholar
  18. Burke, M. J., 1986, The glassy state and survival of anhydrous biological systems, in: Membranes, Metabolism and Dry Organisms ( A. C. Leopold, ed.), Cornell University Press, Ithaca, NY, pp. 358–363.Google Scholar
  19. Close, T. J., Fenton, R. D., Yang, A., Asghar, R., DeMason, D. A., Crone, D. E., Meyer, N. C., and Moonan, F., 1993, Dehydrin: The protein, in: Plant Responses to Cellular Dehydration during Environmental Stress ( T. J. Close and E. A. Bray, eds.), American Society of Plant Physiologists, Rockville, MD, pp. 104–118.Google Scholar
  20. Crane, P. R., 1990, The phylogenetic context of microsporogenesis, in: Microspores: Evolution and Ontogeny ( S. Blackmore and R. B. Knox, eds.), Academic Press, San Diego, pp. 11–41.Google Scholar
  21. Crowe, J. H., Hoekstra, F. A., and Crowe, L. M., 1992, Anhydrobiosis, Annu. Rev. Physiol. 54: 579–599.CrossRefGoogle Scholar
  22. Davidson, E. H., 1986, Gene Activity in Early Development, Academic Press, New York.Google Scholar
  23. Dhindsa, R., 1987, Glutathione status and protein synthesis during drought and subsequent rehydration of Tortula ruralis, Plant Physiol. 83: 816–819.Google Scholar
  24. Donoghue, M. J., 1994, Progress and prospects in reconstructing plant phylogeny, Ann. Mo. Bot. Gard. 81: 405–418.CrossRefGoogle Scholar
  25. Dure, L., III, 1993, A repeating 11-mer amino acid motif and plant desiccation, Plant J. 3: 363–369.PubMedCrossRefGoogle Scholar
  26. Gaff, D., 1980, Protoplasmic tolerance to extreme water stress, in: Adaptation of Plants to Water and High Temperature Stress ( N. C. Turner and P. J. Kramer, eds.), Wiley-Interscience, New York, pp. 207–230.Google Scholar
  27. Gaff, D., 1989, Responses of desiccation-tolerant “resurrection” plants to water stress, in: Structural and Functional Responses to Environmental Stresses ( K. H. Krebb, H. Richter, and T. M. Hinkley, eds.), SPB Academic, The Hague, pp. 255–268.Google Scholar
  28. Gaff, D., Bartels, D., Gaff, J. L., and Schneider, K., 1992, Gene expression at low RWC in two hardy tropical grasses, Trans. Mnin Js. Soc. Plant Physiol. 3: 238–240.Google Scholar
  29. Gwozdz, E. A., and Bewley, J. D., 1975, Plant desiccation and protein synthesis: An in vitro system from dry and hydrated mosses using endogenous and synthetic messenger RNA, Plant Physiol. 55: 340–345.PubMedCrossRefGoogle Scholar
  30. Gwozdz, E. A., Bewley, J. D., and Tucker, E. B., 1974, Studies on protein synthesis in Tortula ruralis: Polyribosome reformation following desiccation, J. Exp. Bot. 25: 599–608.CrossRefGoogle Scholar
  31. Henckel, R. A., Statrova, N. A., and Shaposnikova, S. V., 1977, Protein synthesis in poikiloxerophyte and wheat embryos during the initial period of swelling, Soy. Plant Physiol. 14: 754–762.Google Scholar
  32. Knight, C. D., Sehgal, A., Atwal, K., Wallace, J. C., Cove, D. J., Coates, D., Quatrano, R. S., Bahadur, S., Stockley, P. G., and Cuming, A. C., 1995, Molecular responses to abscisic acid and stress are conserved between moss and cereals, Plant Cell 7: 499–506.PubMedGoogle Scholar
  33. Krochko, J. E., Bewley, J. D., and Pacey, J., 1978, The effects of rapid and very slow speeds of drying on the ultrastructure and metabolism of the desiccation-sensitive moss Cratoneuron fiiicinum, J. Exp. Bot. 29: 905–917.CrossRefGoogle Scholar
  34. Krochko, J. E., Winner, W. E., and Bewley, J. D., 1979, Respiration in relation to adenosine triphosphate content during desiccation and rehydration of-a desiccation-tolerant and a desiccation-intolerant moss, Plant Physiol. 64: 13–17.PubMedCrossRefGoogle Scholar
  35. Leopold, A. C., Bruni, F., and Williams, R. J., 1992, Water in dry organisms, in: Water and Life. Comparative Analysis of Water Relationships at the Organismic, Cellular and Molecular Levels ( G. N. Somero, C. B. Osmond, and C. L. Bolls, eds.), Springer-Verlag, Berlin, pp. 161–169.Google Scholar
  36. McKersie, B., 1991, The role of oxygen free radicals in mediating freezing and desiccation stress in plants, in: Active Oxygen and Oxidative Stress and Plant Metabolism ( E. Pell and K. Staffen, eds.), American Society of Plant Physiologists, Rockville, MD, pp. 107–118.Google Scholar
  37. Michel, D., Furini, A., Salamini, F., and Bartels, D., 1994, Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum, Plant Moi. Biol. 24: 549–560.CrossRefGoogle Scholar
  38. Minich, W. B., and Ovchinnikov, L. P., 1992, Role of cytoplasmic mRNP proteins in translation, Biochimie. 74: 477–483.PubMedCrossRefGoogle Scholar
  39. Mishler, B. D., Lewis, L. A., Buchheim, M. A., Renzaglia, K. S., Garbary, D. J., Delwiche, C. F., Zechman, F. W., Kantz, T. S., and Chapman, R. L., 1994, Phylogenetic relationships of the “green algae” and “bryophytes,”Ann. Mo. Bot. Gard. 81: 451–483.CrossRefGoogle Scholar
  40. Moore, C. J., Luft, S. E., and Hallam, N. D., 1982, Fine structure and physiology of the desiccation-tolerant mosses, Barbula torquata and Triquetrella papillata (Mook. F. and Wils.) Broth., during desiccation and rehydration, Bot. Gaz. 143: 358–367.CrossRefGoogle Scholar
  41. Nelson, D., Salamini, F., and Bartels, D., 1994, Abscisic acid promotes novel DNA-binding activity to a desiccation-related promoter of Craterostigma plantagineum, Plant J. 5: 451–458.PubMedCrossRefGoogle Scholar
  42. Noailles, M. C., 1978, Etude ultrastructurale de la recuperation hydrique apres une periode de secheresse chez une Hypnobryale: Pleurozium schreberi (Willd.) Mitt, Ann. Sci. Nat. Bot. 19: 249–265.Google Scholar
  43. Oliver, M. J., 1991, Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruraiis: Ramifications for a repair-based mechanism of desiccation-tolerance, Plant Physiol. 97: 1501–1511.PubMedCrossRefGoogle Scholar
  44. Oliver, M. J., 1996, Desiccation-tolerance in vegetative plant cells, Physiol. Plant. 97: 779–787.CrossRefGoogle Scholar
  45. Oliver, M. J., and Bewley, J. D., 1984a, Desiccation and ultrastructure in bryophytes, Adv. BryoL 2: 91–131.Google Scholar
  46. Oliver, M. J., and Bewley, J. D., 1984b, Plant desiccation and protein synthesis: IV. RNA synthesis, stability, and recruitment of RNA into protein synthesis upon rehydration of the desiccation-tolerant moss Tortola ruralis, Plant Physiol. 74: 21–25.PubMedCrossRefGoogle Scholar
  47. Oliver, M. J., and Bewley, J. D., 1984c, Plant desiccation and protein synthesis: V. Stability of poly(A)- and poly(A)+ RNA during desiccation and their synthesis upon rehydration in the desiccation-tolerant moss Tortula ruralis and the intolerant moss Cratoneuron fiiicinum, Plant Physiol. 74: 917–922.PubMedCrossRefGoogle Scholar
  48. Oliver, M. J., and Bewley, J. D., 1984d, Plant desiccation and protein synthesis: VI. Changes in protein synthesis elicited by desiccation of the moss Tortula ruralis are effected at the translational level, Plant Physiol. 74: 923–927.PubMedCrossRefGoogle Scholar
  49. Oliver, M. J., and Bewley, J. D., 1997, Desiccation-tolerance of plant tissues: A mechanistic overview, Hortic. Rev. 18: 171–214.Google Scholar
  50. Oliver, M. J., Armstrong, J., and Bewley, J. D., 1993, Desiccation and the control of expression of ß-phaseolin in transgenic tobacco seeds, J. Exp. Bot. 44: 1239–1244.CrossRefGoogle Scholar
  51. Piatkowski, D., Schneider, K., Salamini, F., and Bartels, D., 1990, Characterization of five abscisic acid-responsive cDNA clones from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes, Plant Physiol. 94: 1682–1688.PubMedCrossRefGoogle Scholar
  52. Platt, K. A., Oliver, M. J., and Thomson, W. W., 1994, Membranes and organelles of dehydrated Selaginella arid Tortula retain their normal configuration and structural integrity: Freeze fracture evidence, Protoplasma 178: 57–65.CrossRefGoogle Scholar
  53. Platt-Aloia, K. A., Lord, E. M., Demason, D. A., and Thomson, W. W., 1986, Freeze- fracture observations on membranes of dry and hydrated pollen from Collomia, Phoenix and Zea, Planta 168: 291–298.CrossRefGoogle Scholar
  54. Pramanik, S. K., Krochko, J. E., and Bewley, J. D., 1992, Distribution of cytosolic mRNAs between polysomal and ribonucleoprotein complex fractions in alfalfa embryos, Plant Physiol. 99: 1590–1596.Google Scholar
  55. Reynolds, T. L., and Bewley, J. D., 1993, Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium uirginianum. Comparison of the effects of drying, rehydration and abscisic acid, J. Exp. Bot. 44: 921–928.CrossRefGoogle Scholar
  56. Sachs, M., and Ho, T. H. D., 1986, Alteration of gene expression during environmental stress, Annu. Rev. Plant Physiol. 37: 363–376.CrossRefGoogle Scholar
  57. Schonbeck, M. W., and Bewley, J. D., 1981, Responses of the moss Tortula ruralis to desiccation treatments. II. Variations in desiccation tolerance, Can. J. Bot. 59: 2707–2712.CrossRefGoogle Scholar
  58. Scott, H. B., II, and Oliver, M. J., 1994, Accumulation and polysomal recruitment of transcripts in response to desiccation and rehydration of the moss Tortula ruralis, J. Exp. Bot. 45: 577–583.CrossRefGoogle Scholar
  59. Seel, W. E., Hendry, G. A. F., and Lee, J. E., 1992a, Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses, J. Exp. Bot. 43: 1031–1037.CrossRefGoogle Scholar
  60. Seel, W. E., Hendry, G. A. F., and Lee, J. E., 1992b, The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats, J. Exp. Bot. 43: 1023–1030.CrossRefGoogle Scholar
  61. Sen Gupta, A., 1977, Non-auto-trophic CO2 fixation by mosses, M.Sc. thesis, University of Calgary.Google Scholar
  62. Siebert, G., Loris, J., Zollner, B., Frenzel, B., and Zahn, R. K., 1976, The conservation of poly (A) containing RNA during the dormant state of the moss Polytrichum commune, Nucleic Acids Res. 3: 1997–2003.CrossRefGoogle Scholar
  63. Silverstein, E., 1973, Subribosomal ribonucleoprotein particles of developing wheat embryo, Biochemistry 12: 951–958.PubMedCrossRefGoogle Scholar
  64. Simon, E. W., 1978, Membranes in dry and imbibing seeds, in: Dry Biological Systems ( J. H. Crowe and J. S. Clegg, eds.), Academic Press, New York, pp. 205–224.Google Scholar
  65. Simon, E. W., and Mills, L. K., 1983, Imbibition, leakage, and membranes, in: Mobilization of Reserves in Germination ( C. Nozzolillo, P. J. Lee, and F. A. Loewus, eds.), Plenum Press, New York, pp. 9–27.CrossRefGoogle Scholar
  66. Smirnoff, N., 1993, The role of active oxygen in the response of plants to water deficit and desiccation, Tansley Review No 52, New Phytol. 125: 27–58.CrossRefGoogle Scholar
  67. Smith, I. K., Polle, A., and Rennenberg, H., 1990. Glutathione, in: Stress Responses in Plants: Adaptation and Acclimation Mechanisms (R. G. Alscher and J. R. Cummings, eds. ), Wiley-Liss New York, pp. 201–215.Google Scholar
  68. Spirin, A. S., Belitsina, N. V., and Ajtkhozhin, M. A., 1964, Messenger RNA in early embryogenesis, Zh. Obshch. Biol. 25: 321–338.PubMedGoogle Scholar
  69. Stewart, G. R., and Lee, J. A., 1972, Desiccation-injury in mosses. II. The effect of moisture stress on enzyme levels, New Phytol. 71: 461–466.CrossRefGoogle Scholar
  70. Stewart, R. R. C., and Bewley, J. D., 1982, Stability and synthesis of phospholipids during desiccation and rehydration of a desiccation-tolerant and a desiccation-intolerant moss, Plant Physiol. 69: 724–727.PubMedCrossRefGoogle Scholar
  71. Swanson, E. S., Anderson, N. H., Gellerman, J. L., and Schlenk, H., 1976, Ultrastructure and lipid composition of mosses, Bryologist, 79: 339–349.CrossRefGoogle Scholar
  72. Thomson, W. W., and Platt-Aloia, K. A., 1982, Ultrastructure and membrane permeability in cowpea seeds, Plant Cell Environ. 5: 367–373.CrossRefGoogle Scholar
  73. Tucker, E. B., and Bewley, J. D., 1976, Plant desiccation and protein synthesis. III.Stability of cytoplasmic RNA during dehydration and its synthesis on re-hydration of the moss Tortula ruralis, Plant Physiol. 57: 564–567.PubMedCrossRefGoogle Scholar
  74. Tucker, E. B., Costerton, J. W., and Bewley, J. D., 1975, The ultrastructure of the moss Tortula ruralis on recovery from desiccation, Can. J. Bot. 53: 94–101.CrossRefGoogle Scholar
  75. Werner, O., Espin, R. M. R., Bopp, M., and Atzorn, R., 1991, Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw., Planta 186: 99–103.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Melvin J. Oliver
    • 1
  • Andrew J. Wood
    • 1
  1. 1.Plant Stress and Water Conservation UnitUSDA-ARSLubbockUSA

Personalised recommendations