Advertisement

The Role of Cytokines in the Action of Immunological Adjuvants

  • Anthony C. Allison
Chapter
Part of the NATO ASI Series book series (NSSA, volume 293)

Abstract

Three classes of adjuvants - mineral oil emulsions, aluminium salts, and saponin - have long been used to augment immune responses in vaccination. Each has its own advantages and limitations, and during the last decade new adjuvants have been developed. These complement a new group of antigens, including proteins produced by recombinant technology and synthetic peptides, which require adjuvants to elicit protective immune responses. Some of the recently developed adjuvant formulations are already approved for use in human and veterinary vaccines. This paper describes immunomodulating bacterial products and synthetic derivatives, as well as two-phase (lipid in water) vehicles for antigens. It also reviews briefly what adjuvants are required to do and what is known of their mode of action, with special reference to the role of cytokines.

Keywords

Follicular Dendritic Cell Adjuvant Activity Muramyl Dipeptide IgG2a Antibody IgG2a Isotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, A.C. and Davies, A.J.S. 1971. Requirement of thymus-dependent lymphocytes for potentiation by adjuvants of antibody formation. Nature. 233: 330.PubMedCrossRefGoogle Scholar
  2. Allison, A.C. and Gregoriadis, G. 1974. Liposomes as immunological adjuvants. Nature. 252: 252.PubMedCrossRefGoogle Scholar
  3. Allison, A.C. and Byars, N.E. 1986. An adjuvant formulation that selectively elicits the formation of antibodies of protective isotypes and cell-mediated immunity. J. Immun. Methods. 2: 369.Google Scholar
  4. Allison, A.C. and Byars, N.E. 1992. Adjuvants for a new generation of vaccines. Can. J. Infect. Dis., 3: 84B.Google Scholar
  5. Audibert, F.M. and Lise, L.D. 1993. Adjuvants: current status, clinical perspectives and future prospects. Immunol. Today. 14: 281.PubMedCrossRefGoogle Scholar
  6. Byars, N.E., Fraser-Smith, E.B., Pecyk, R.A. et al. 1994. Vaccinating guinea pigs with recombinant glycoprotein D of herpes simplex virus in an efficacious adjuvant formulation elicits protection against vaginal infection. Vaccine. 12: 200.PubMedCrossRefGoogle Scholar
  7. Cumberpatch, M. and Kimber, I. 1995. Tumour necrosis factor-α is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization. Immunology. 84: 31.Google Scholar
  8. Dempsey, P.W., Allison, M.E.D., Akkaraju, S., Goodnow, C.C. and Fearon, D.T. 1996. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 271: 348.PubMedCrossRefGoogle Scholar
  9. Doherty, P.C., Allen, W., Eichelberger, M. and Carding, S.R. 1992. Roles of ab and gd T-cell subsets in viral immunity. Annu. Rev. Immunol. 10: 123.PubMedCrossRefGoogle Scholar
  10. Ellouz, F., Adam, A., Ciorbaru, R. and Lederer, E. 1974. Minimal structural requirements for adjuvant activity of bacterial peptidoglycans. Biochem. Biophys. Res. Comm., 59: 1317.PubMedCrossRefGoogle Scholar
  11. Finkelman, F.D., Holmes, J., Katona, I.M. et al. 1990. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol., 8: 303.PubMedCrossRefGoogle Scholar
  12. Glück, R. 1995. Liposomal presentation of antigens for human vaccines, in: Powell, M.F., Newman, M.F. (eds.). Vaccine Design: The Subunit and Adjuvant Approach. Plenum Press, New York 1995; pp 325.Google Scholar
  13. Gregoriadis, G. 1990. Immunological adjuvants: A role for liposomes. Immunol. Today. 11: 89.PubMedCrossRefGoogle Scholar
  14. Gregoriadis, G., Wang, Z., Barenholz, Y. and Francis, M.J. 1993. Liposome-entrapped T-cell peptide provides help for a co-entrapped B-cell peptide to overcome genetic restriction in mice and induce immunological memory. Immunology. 80: 535.PubMedGoogle Scholar
  15. Hamaoka, T., Katz, D.H., Benacerraf, B. 1973. Hapten-specific antibody responses in mice. II. Cooperative interactions between adoptively transferred T-and B-lymphocytes in the development of an IgE response. J. Exp. Med., 138: 538.PubMedCrossRefGoogle Scholar
  16. Heufler, C., Koch, F. and Schüler, G. 1988. Granulocyte/macrophage colony-stimulating factor and interleukin-1 mediate the maturation of epidermal Langerhans cells into potent immunostimulatory dendritic cells. J. Exp. Med., 167: 700.PubMedCrossRefGoogle Scholar
  17. Kaminski, M.S., Kitamura, K. and Maloney, D.G. 1986. Importance of antibody isotype in monoclonal anti-idiotype therapy of murine B-cell lymphoma. A study of hybridoma class switch variants. J. Immunol., 136: 1123.PubMedGoogle Scholar
  18. Kenney, J.S., Hughes B.M. and Allison, A.C. 1989. Determination of antibody affinity and concentration by solution-phase microradioimmunoassay, in: Zola, H. (ed.) Laboratory Methods in Immunology. CRC Press, Boca Raton; pp 209.Google Scholar
  19. Kenney, J.S., Hughes, B.W., Masada, M.P. and Allison, A.C. 1989. Influence of adjuvants on the quantity, affinity, isotype and epitope specificity of murine antibodies. J. Immunol. Methods. 21: 157.CrossRefGoogle Scholar
  20. Macatonia, S.E., Hosken, N.A., Litton, M., Vieira, P., Hsieh, C.-S., culpepper, J.A., Wysocka, M., Trinchieri, G., Murphy, K.M. and O’Garra, A. 1995. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T-cells. J. Immunol. 154: 5071.PubMedGoogle Scholar
  21. MacLennan, I.C.M. 1994. Germinal centers. Annu. Rev. Immunol., 12: 117.PubMedCrossRefGoogle Scholar
  22. Meeusen, E.N.T., Premier, R.R. and Brandon, M.R. 1996. Tissue-specific migration of lymphocytes: a key role for Th1 and Th2 cells? Immunol. Today. 17: 421.PubMedCrossRefGoogle Scholar
  23. Persson, G.R., Engel, D., Whitney, C., Darueau, R., Weinberg, A., Brunsvold, M. and Page, R.C. 1994. Immunization against Porphyromonas gingivalis inhibits progression of experimental periodontitis in nonhuman primates. Infect. Immun., 62: 1026.PubMedGoogle Scholar
  24. Reichmann, L., Clark, M., Waldmann, H. and Winter, G. 1988. Reshaping human antibodies for therapy. Nature. 332: 323.CrossRefGoogle Scholar
  25. Ribi, E., Ulrich, J.T. and Masihi, K.N. 1993. Immunopotentiating activities of monophosphoryl lipid A, in: Majde, J.A. (ed.) Immunopharmacology of Infectious Diseases: Vaccine Adjuvants and Modulation of Non-specific Resistance. Alan R. Liss, New York; pp 101.Google Scholar
  26. Ron, Y. and Sprent, J. 1987. T-cell priming in vitro: A major role for B-cells in presenting antigen to T-cells in lymph nodes. J. Immunol., 138: 2848.PubMedGoogle Scholar
  27. Rothel, J.S., Corner, L.A., Seaw, H.-F., Wood, P.R. and Lightowlers, M.W. 1996. Antigen-specific IgA secreting cells induced by peripheral vaccination. Immunol. Cell. Biol., 74: 278.CrossRefGoogle Scholar
  28. Schijns, V.E.C.J., Haagmans, B., Rijke, E.O., Huang, S., Aguet, M. and Horzunek, M.C. 1994. IFN-y receptor-deficient mice generate antiviral Th1-characteristic cytokine profiles but altered antibody responses. J. Immunol. 153: 2029.PubMedGoogle Scholar
  29. Schulz, M., Zinkernagel, R.M. and Hengartner, H. 1991. Peptide-induced protection by cytotoxic T-cells. Proc. Natl. Acad. Sci. USA. 88: 991.PubMedCrossRefGoogle Scholar
  30. Spitznagel, J.K. and Allison, A.C. 1970. Mode of action of adjuvants: effects on antibody responses to macrophages-associated bovine serum albumin. J. Immunol. 104: 128.PubMedGoogle Scholar
  31. Steinman, R.M. 1991. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9: 271.PubMedCrossRefGoogle Scholar
  32. Strobl, H., Riedl, E., Scheinecker, G, Bello-Fernandez, G, Pickl, W.F., Rappersberger, K., Majdic, O. and Knapp., W. 1996. TGF-β1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J. Immunol. 157: 1499.PubMedGoogle Scholar
  33. Szakal, A.K., Kosco, M.H. and Tew, J.G. 1989. Microanatomy of lymphoid tissue during humoral immune responses: Structure-function relationships. Annu. Rev. Immunol. 7: 91.PubMedCrossRefGoogle Scholar
  34. Toes, R.E.M., Blom, R.J.J., Offringa, R., Kast, W.M. and Melief, C.J.M. 1996. Enhanced tumor outgrowth after peptide vaccination. J. Immunol. 156: 3911.PubMedGoogle Scholar
  35. Unanue, E.R., Askonas, B.A. and Allison, A.C. 1969. A role of macrophages in the stimulation of immune responses by adjuvants. J. Immunol. 103: 71.PubMedGoogle Scholar
  36. Van Rooijen, N. and Sanders, A. 1994. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol Methods. 174: 83.PubMedCrossRefGoogle Scholar
  37. Vijay, H.M., Lavregne, G., Huang, H. and Bernstein, I.L. 1979. Preferential synthesis of IgE reaginic antibodies in rats immunized with alum adsorbed antigens. Int. Arch. Allergy Appl. Immunol. 59: 227.PubMedCrossRefGoogle Scholar
  38. Walker, B.D., Flexner, C. and Paradis, T.J. 1988. HIV-1 reverse transcriptase is a target for cytotoxic T-lymphocytes in infected individuals. Science. 240: 64.PubMedCrossRefGoogle Scholar
  39. Waters, R.V., Terrell, T.G. and Jones, G.H. 1986. Uveitis induction in the rabbit by muramyl dipeptides. Infect. Immun., 51: 816.PubMedGoogle Scholar
  40. White, R.G. 1976. The adjuvant effect of microbial products on the immune response. Rev. Microbiol., 30: 579.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Anthony C. Allison
    • 1
  1. 1.Dawa CorporationBelmontUSA

Personalised recommendations