Biological Resonance and the State of the Organism

Functional Electrodynamical Testing
  • Gábor Lednyiczky
  • József Nieberl


A brief survey of electromagnetic field interactions in living systems leads into the theoretical foundations for biofeedback processes. The continuous information exchange between a living system and its environment and within the system, is shown to occur via electromagnetic field (EMF) interactions. The quantification of this continuous information exchange is employed in a device (the Cerebellum Multifunction Medical Instrument, CMMI) which allows a substance-specific monitoring of the ongoing regulative processes of the body. With this device, complex adaptation processes in an organism can be tested. Such processes are based on the information exchange between a living system and its environment, so that the procedure is actually a functional electrodynamic testing (FEDT). With an FEDT instrument, a physician can determine the electromagnetic state of a patient, and from this can make a diagnosis without the necessity of invasive methods. In order to further avoid an invasive character, extremely-low-intensity EMF signals are used in the CMMI. Due to the fact that the patient is exposed to the informational character of the homeopathically prepared body-specific constituents, the diagnostic procedure is also a kind of treatment itself.


Electromagnetic Field Living System Biological Object Distribution Diagram Adaptation Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peat F.D. Synchronicity: The Bridge Between Mind and Matter. Bantam Books N.Y. 1987.Google Scholar
  2. 2.
    Recent Advances in Biophoton Research and its Applications (Popp F.-A., Li K.H. and Gu Q. Editors) World Scientific Singapore. 1992.Google Scholar
  3. 3.
    Bischof M: Biophotonen. Das Licht in unseren Zellen. Zweitausendeins Frankfurt-am-Main. 1995.Google Scholar
  4. 4.
    Zhalko-Tytarenko O., Lednyiczky G. (1997) Endogenous Electromagnetic Oscillations in the Consciousness Field Pattern Formation. World Futures, (in press)Google Scholar
  5. 5.
    Homöopathie-Bioresonanztherapie (Endler P.C., Schulte J. Editors) Maudrich Wien, München, Bern. 1996.Google Scholar
  6. 6.
    Zhalko-Tytarenko O., Lednyiczky G., Topping S. (1997) A Review of Endogenous Electromagnetic Fields and Potential Links to Life and Healing Processes. Alternative Therapies, (in press)Google Scholar
  7. 7.
    Popp F.-A. Biologie des Lichts: Grundlagen der ultraschwachen Zellstrahlung. Verlag Paul Parey Berlin, Hamburg. 1984.Google Scholar
  8. 8.
    Gurvich A: Selected Works. Meditsina Moscow. 1977.Google Scholar
  9. 9.
    Warnke U. Influence of Light on Cellular Respiration in: Electromagnetic Bio-Information (F.-A. Popp Editor.) Urban & Schwarzenberg München. 1989 pp.213-220.Google Scholar
  10. 10.
    Ho M.-W., Xu X. Ross S., Saunders P.T. Light Emission and Rescattering in Synchronously Developing Populations of Early Drosophila Embryos-Evidence for Coherence of the Embryonic Field and Long Range Cooperativity in: Recent Advances in Biophotons Applications (Popp F.-A., Li K.H. and Gu Q. Editors) World Scientific Singapore. 1992 pp.287-306.Google Scholar
  11. 11.
    Brown F.A. (1954) Persistent activity rhythms in the oyster. American Scientist. 178, 510.Google Scholar
  12. 12.
    Weaver R. (1970) The effect of electric fields on circadian rhythms in men. Life Sci. Space Res. 8, 177.Google Scholar
  13. 13.
    Pilla A., Manning M., Personal communication with G. Lednyiczky.Google Scholar
  14. 14.
    Pohl H.A.: Dielectrophoresis: The Behavior of Matter in Non-uniform Electric Fields. Cambridge University Press. 1978.Google Scholar
  15. 15.
    Pohl H.A. Natural oscillating fields of cells in: Coherent excitations in Biological Systems. (Frölich H., Kremer F., editors) Springer Verlag Berlin. 1983 pp. 199–210.CrossRefGoogle Scholar
  16. 16.
    Pohl H. A. (1983) Natural ac electric fields in and about cells. Phenomena. 5, 87–103.Google Scholar
  17. 17.
    Hölzel R., Lamprecht I. (1984) Electromagnetic fields around biological cells. Neural Network World, 3, 327–337.Google Scholar
  18. 18.
    Gow N.A.R. (1984) Transhyphal electrical currents in fingi. J. Gen. Microbiology. 130, 3313–3318.Google Scholar
  19. 19.
    Gow N.A.R., Kropf D.I., Harold F.M. (1984) Growing hyphae of Achlya bisexualis generate a longitudinal pH gradient in the surrounding medium. J. Gen. Microbiology. 130, 2967–2974.Google Scholar
  20. 20.
    Pohl H.A. (1981) Natural electrical RF oscillation from cells. J. Bioenerg. Biomembr. 13, 149–169.PubMedCrossRefGoogle Scholar
  21. 21.
    Toko K., Hayashi K., Yamafuji K. (1986) Spatio-temporal organization of electricity in biological growth. Trans. IECE Japan. 69, 485–487.Google Scholar
  22. 22.
    Yamaguchi H., Hosokawa K., Soda A., Mizamoto H., Kinouchi Y. (1993) Effects of seven months exposure to a static 0.2 T magnetic field on growth and glycolytic activity of human gingival fibroblasts, Biochem. Biophys. Acta, 1156, 302–306.PubMedCrossRefGoogle Scholar
  23. 23.
    Azadniv M., Miller M.W., Cox C., Valentine F. (1993) On the mechanism of a 60-Hz electric field induced growth reduction of mammalian cells in vitro. Rad. Environ. Biophys. 32, 73–83.CrossRefGoogle Scholar
  24. 24.
    Goodman R., Henderson A.S. (1988) Exposure of salivary gland cells to low frequency electromagnetic fields alters polypeptide synthesis. Proc.Natl.Acad.Sci., USA. 85, 3928–3932.PubMedCrossRefGoogle Scholar
  25. 25.
    Blank M., Soo L. (1992) Threshold for Inhibition of Na, K-ATPase by ELF Alternating Currents. Bioelectromagnetics. 13, 329–333.PubMedCrossRefGoogle Scholar
  26. 26.
    Blank M., Soo L. (1993) The Na, K-ATPase as a model for electromagnetic field effects on cells. Bioelectrochem. and Bioenergetics. 30, 85–92.CrossRefGoogle Scholar
  27. 27.
    Blank M., Soo L., Lin H., Henderson A.S., Goodman R. (1992) Changes in transcription in HL-60 cells following exposure to alternating currents from electric fields. Bioelectrochemistry and Bioenergetics. 28, 301–309.CrossRefGoogle Scholar
  28. 28.
    Blank M., Khorkova O., Goodman R. (1994) Changes in polypeptide disribution stimulated by different levels of electromagnetic and thermal stress. Bioelectrochemistry and Bioenergetics. 33, 109–114.CrossRefGoogle Scholar
  29. 29.
    Serpersu E.H., Tsong T.Y. (1984) Activation of electrogenic Rb+ transport of Na, K-ATPase by an electric field. J.Biol.Chem. 259, 7155–7162.PubMedGoogle Scholar
  30. 30.
    Mevissen M., Stamm A., Buntenkötter S., Zwingelberg R., Wahnschaffe U., Löscher W. (1993) Effects of Magnetic Fields on Mammary Tumor Development Induced by 7,12-Dimethylbenz(a)anthracene in Rats. Bioelectromagnetics. 14, 131–143.PubMedCrossRefGoogle Scholar
  31. 31.
    Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields, (Grandolfo M., Michaelson S.M., and Rindi A. editors) Plenum Press New York, London. 1985.Google Scholar
  32. 32.
    Abstract Book of the 17th Annual Meeting of BEMS, Boston, MA, June 18–22, 1995, The Bioelectromagnetics Society, Frederick, MD, 1995.Google Scholar
  33. 33.
    Blank M. (1992) Na, K-ATPase function in alternating electric fields. FASEB Journal. 6, 2434–2438.PubMedGoogle Scholar
  34. 34.
    Goodman R., Blank M., Lin H., Dai R., Khorkova O., Soo L., Weisbrot D., Henderson A. (1994) Increased levels of hsp70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochemistry and Bioenergetics. 33, 115–120.CrossRefGoogle Scholar
  35. 35.
    Popp F.-A. Coherent photon storage in biological systems in: Electromagnetic Bioinformation (Popp F.-A. Editor) Urban & Schwarzenberg München-Wien-Baltimore. 1989 pp. 144-167.Google Scholar
  36. 36.
    Ludwig H.W. (1988) Die Debatte um die Magnetfeldtherapie aus der Sicht der Biophysik. Erfahrungsheilkunde. Acta medica empirica. 12, 735–739.Google Scholar
  37. 37.
    Schumacher P: Biophysikalische Therapie der Allergien, Sonntag Verlag Stuttgart. 1994.Google Scholar
  38. 38.
    Brügemann H: Bioresonance and Multiresonance Therapy (BRT). Haug International Brussels. 1993.Google Scholar
  39. 39.
    Ludwig W: SIT-System-Informations-Therapie. Spitta Balingen, 1994.Google Scholar
  40. 40.
    Proceedings of the Annual Meetings of the International Medical Society of BRT and International Therapeutic Society of BRT, RTI Heft I-XVII. (Brügemann Inst, ed.), Lochhamer Schlag 5, 82166, Gräfelfing (Germany).Google Scholar
  41. 41.
    Lehmann H. (1993) Elfolgreiche Behandlung primärer Dysmenorrhoe-fast ohne Therapieversager. Der Freie Arzt. No. 4.Google Scholar
  42. 42.
    Schmidt H: Konstitutionelle Akupunktur. Hippokrates Stuttgart. 1988.Google Scholar
  43. 43.
    Acupuncture (O’Connor J., Bensky D. Editors) Eastland Press Seattle. 1981.Google Scholar
  44. 44.
    Bensoussan A: The Vital Meridian. Churchill Livingstone Melbourne, Edinburgh, London, N.Y. 1991.Google Scholar
  45. 45.
    Prkert M., Hempen C.-H: Systematische Akupunktur. Urban & Sehwarzenberg München, Wien, Baltimore. 1985.Google Scholar
  46. 46.
    Heine H: Lehrbuch der Biologischen Medizin. Hippokrates Stuttgart. 1991.Google Scholar
  47. 47.
    Rossmann H: Organometrie nach Voll. Haug Heidelberg. 1988.Google Scholar
  48. 48.
    Vill H: Vom Impuls-zum Decoder-Dermogramm. Haug Heidelberg. 1982.Google Scholar
  49. 49.
    Langreder W: Von der Biologischen zur Biophysikalischen Medizin. Haug Heidelberg. 1991.Google Scholar
  50. 50.
    Becker R. O., Seiden G: The Body Electric. Morrow New York. 1985.Google Scholar
  51. 51.
    Bawin S.M., Sheppard A.R., Mahoney M.D., Adey W.R. (1984) Influences of Sinusoidal Electric Fields on Excitability in the Rat Hippocampal Slice. Brain Research. 323, 227–237.PubMedCrossRefGoogle Scholar
  52. 52.
    Adey W. R. (1980) Frequency and Power Windowing in Tissue Interactions with Weak Electromagnetic Fields. Proceedings of the IEEE. 63, No. I. 119.Google Scholar
  53. 53.
    Lin-Liu S., Adey W.R. (1982) Low frequency Amplitude Modulated Microwave Fields Change Calcium Efflux Rates From Synaptosomes. Bioelectromagnetics. 3, 309–322.PubMedCrossRefGoogle Scholar
  54. 54.
    Adey W.R. (1981) Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev. 61, 435.PubMedGoogle Scholar
  55. 55.
    Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems (Adey W.R. Editor) Oxford University Press New York. 1992 pp.47-77.Google Scholar
  56. 56.
    Smith C.W., Best S: Electromagnetic Man. J.M. Dent & Sons, Ltd. London. 1990.Google Scholar
  57. 57.
    Pischinger A: Matrix and Matrix Regulation. Haug Brussels. 1991.Google Scholar
  58. 58.
    Perger F: Kompendium der Regulationspathologie und-Therapie. Sonntag München. 1990.Google Scholar
  59. 59.
    Normal Matrix and Pathological Conditions (Heine H., Anastasiadis P. editors) Gustav Fischer Stuttgart, Jena, New York. 1992.Google Scholar
  60. 60.
    Choy R., Monro J.A., Smith C.W. (1987) Electrical Sensitivities in Allergy Patients. Clinical Ecology. 4, 93–102.Google Scholar
  61. 61.
    Lednyiczky G. (1993) BICOM In-vitro-Modulation der Sphaeroidformation. Kolloquium des Internazion-alen Medizinoschen Arbeitskreises BRT (IMA). Fulda, 1–3 Oktober, 1993. Brügemann Institut Gauting RTL Heft 13, pp. 152–154.Google Scholar
  62. 62.
    Lednyiczky G. (1993) BICOM In-vitro-Modulation der Tumorzellen-Entwicklung. Kolloquium des Internazionalen Medizinoschen Arbeitskreises BRT (IMA), Fulda, 1–3 Oktober, 1993. Brügemann Institut Gauting RTL Heft 13, pp. 146–150.Google Scholar
  63. 63.
    Lednyiczky G., Osadcha O. (1994) In-vitro-Modulation der Phagozytose durch die Bicom-Technologie. Acta medica empirica. 43, 3a, pp. 184–188.Google Scholar
  64. 64.
    Lednyiczky G., Savtsova Z., Sakharov D. (1995) Endogenous Electromagnetic Field Corrects the Immunodeficiency of Chernobyl Mice. Abst. book of The 17th Annual Meeting of the Bioelectromagnetics Society, 18–22 June, Boston, Massachusetts, p.210.Google Scholar
  65. 65.
    Nosa P.P., Penezina O.P., Brener LP., Lednyiczky G., Tcheshuk V.E., Lakotosh V.P., Serbynenko V.G. (1995) Treatment of Women Suffering from Mastopathy Employing Homoeopathic and Bioresonance Methods. Abstr. in: Forschende Komplementarmedizin. 2, no. 6, p.335.CrossRefGoogle Scholar
  66. 66.
    Lednyiczky G., Waiserman A., Sakharov D., Koshel N. Geschädigte Drosophilalarven und Information von nicht Geschädigten Tieren in: Homöopathie-Bioresonanztherapie (Endler P.C., Schulte J. Editors) Maudrich Wien, München, Bern. 1996. pp. 181-188.Google Scholar
  67. 67.
    Zhalko-Tytarenko O., Lednyiczky G. (1994) Bioresonance-induced tunneling in serum albumin. XXV Congress of the Internat. Soc. Hematology. La Revista de Investigacion Clinica, Suplemento, Abril, p. 303.Google Scholar
  68. 68.
    Zhalko-Tytarenko O., Liventsov V., Lednyiczky G. (1996) Endogenous electromagnetic field influence on the free energy of hydrogen bond formation in water. Proceedings of the Second Annual Advanced Water Sciences Symposium, 4–6 October, Dallas Texas, part 7, pp.23-27.Google Scholar
  69. 69.
    Savostyanova A., Zhalko-Tytarenko O., Lednyiczky G. (1996) The influence of the human endogenous electromagnetic oscillations on non-regular chemical oscillations. Inorganic Chemistry (in Russian) (submitted).Google Scholar
  70. 70.
    Weil A., Rosen W: From Chocolate to Morphine. Houghton Mifflin Co. Boston, N.Y. 1993.Google Scholar
  71. 71.
    Evolutionary Processes and Metaphors (Ho M.-W., Fox W. Editors) John Wiley & Sons Chichester, N.Y, Brisbane, Toronto, Singapore. 1988.Google Scholar
  72. 72.
    Ho. M.-W. Coherent Excitations and the Physical Foundations of Life in: Theoretical Biology: Epigenetic and Evolutionary Order from Complex Systems. (Goodwin B. and Saunders P. Editors) Edinburgh University Press Edinburgh. 1989 pp. 162–176.Google Scholar
  73. 73.
    EMF in the Workplace. U.S. DOE, NIOSH, NIEHS Washington. 1996.Google Scholar
  74. 74.
    Schumann W. (1954) Uber die strahlunglosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Zeitcshrift für Naturforschung, pp. 149-154.Google Scholar
  75. 75.
    Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields (Grandolfo M., Michaelson S.M., Rindi A. Editors) Plenum Press N.Y, London. 1983.Google Scholar
  76. 76.
    Vincent L.-M. (1993) Theory of Data Transferal. Principles of a New Approach to the Information Concept. Acta Biotheoretica. 41, pp. 139–145.CrossRefGoogle Scholar
  77. 77.
    Tamba-Mecz I: La sémantique. Presses Universitaires de France Paris. 1988.Google Scholar
  78. 78.
    Ultra High Dilution: Physiology and Physics (Endler P.C. and Schulte J. Editors) Kluwer Dordrecht, Boston, London, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Gábor Lednyiczky
    • 1
  • József Nieberl
    • 1
  1. 1.Hippocampus Research FacilitiesBudapestHungary

Personalised recommendations