Measurement of Cytochrome Oxidase Redox State by Near Infrared Spectroscopy

  • C. E. Cooper
  • M. Cope
  • V. Quaresima
  • M. Ferrari
  • E. Nemoto
  • R. Springett
  • S. Matcher
  • P. Amess
  • J. Penrice
  • L. Tyszczuk
  • J. Wyatt
  • D. T. Delpy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 413)


Although near infrared spectroscopy (NIRS) is primarily used to probe changes in oxyhaemoglobin (HbO2) and deoxyhaemoglobin (dHb) concentrations, it has long been realised that there is a significant oxygen-concentration dependent near infrared signal from the mitochondrial enzyme cytochrome c oxidase. In this paper we discuss the origins of this near infrared (NIR) signal, the possible factors affecting its intensity and its likely physiological and clinical significance. This paper complements our recent review on this subject1.


Cytochrome Oxidase Near Infrared Spectroscopy Paracoccus Denitrificans Infrared Signal Redox State Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooper C. E., Matcher S. J., Wyatt J. S., Cope M., Brown G. C., Nemoto E. M., Delpy D. T. 1994, Near infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics, Biochem. Soc. Trans. 22:974–980.Google Scholar
  2. 2.
    Babcock G. T., Wikström M. 1992, Oxygen Activation and the conservation of energy in cell respiration, Nature 356:301–309.ADSCrossRefGoogle Scholar
  3. 3.
    Cooper C. E. 1990, The steady state oxidation of cytochrome c by cytochrome c oxidase, Biochim. Biophys. Acta 1017:187–223.CrossRefGoogle Scholar
  4. 4.
    Brown G. C. 1992, Control of respiration and ATP synthesis in mammalian mitochondria and cells, Biochem. J. 284:1–13.Google Scholar
  5. 5.
    Iwata S., Ostermeier C., Ludwig B., Michel H. 1995, Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature 376:660–669.CrossRefGoogle Scholar
  6. 6.
    Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. 1995, Structures of Metal Sites of Oxidized Bovine Heart Cytochrome c Oxidase at 2.8Å, Science 269:1069–1074.ADSCrossRefGoogle Scholar
  7. 7.
    Wharton D. C., Tzagoloff A. 1964, Studies on the electron transfer system. LVII. The near infrared absorption band of cytochrome oxidase, J. Biol. Chem. 239:2036–2040.Google Scholar
  8. 8.
    Boelens R., Wever R., Gelder B. F. v. 1982, Electron transfer after flash photolysis of mixed-valence car-boxycytochrome c oxidase, Biochim. Biophys. Acta 682:264–272.CrossRefGoogle Scholar
  9. 9.
    Boelens R., Wever R. 1980, Redox reactions in mixed-valence cytochrome oxidase, FEBS Lett. 116:223–226.CrossRefGoogle Scholar
  10. 10.
    Erecinska M., Chance B., Wilson D. F. 1971, The oxidation-reduction potential of the copper signal in pigeon heart mitochondria, FEBS Lett. 16:284–286.CrossRefGoogle Scholar
  11. 11.
    Hartzell C. R., Hansen R. E., Beinert H. 1973, Electron Carriers of Cytochrome Oxidase Detectable by Electron Paramagnetic Resonance and Their Relationship to Those Traditionally Recognized in This Enzyme, Proc. Natl. Acad. Sci. USA 70:2477–2481.ADSCrossRefGoogle Scholar
  12. 12.
    Kelly M., Lappalainen P., Talbo G., Haltia T., van der Oost J., Saraste M. 1993, Two cysteines, two histidines, and one methionine are ligands of a binuclear purple copper center, J Biol Chem 268:16781–7.Google Scholar
  13. 13.
    Ingledew W. J., Bacon M., Rich P. R. 1992, Characterisation of a near infra-red absorption band of the Eschericia coli quinol oxidase, cytochrome o, which is attributable to the high-spin ferrous haem of the binuclear site, FEBS Lett. 305:167–170.CrossRefGoogle Scholar
  14. 14.
    Henning W., Vo L., Albanese J., Hill B. C. 1995, High-yield purification of cytochrome aa 3 and cytochrome caa 3 oxidases from Bacillus subtilis plasma membranes, Biochem. J. 309:279–283.Google Scholar
  15. 15.
    Ferrari M., Hanley D. F., Wilson D. A., Traystman R. J. 1990, Redox changes in cat brain cytochrome c oxidase after blood-fluorocarbon exchange, Am. J. Physiol. 258:H1706–1713.Google Scholar
  16. 16.
    Miyake H., Nioka S., Zaman A., Smith D. S., Chance B. 1991, The Detection of Cytochrome Oxidase Heme Iron and Copper Absorption in the Blood-Perfused and Blood-Free Brain in Normoxia and Hypoxia, Anal. Biochem. 192:149–155.CrossRefGoogle Scholar
  17. 17.
    Cope M. The application of near infrared spectroscopy to non-invasive monitoring of cerebral oxygenation in the newborn infant, PhD Thesis. University of London, 1991.Google Scholar
  18. 18.
    Cope M., van der Zee P., Essenpreis M., Arridge S. R., Delpy D. T. 1991, Data analysis methods for near infrared spectroscopy of tissue: problems in determining the relative cytochrome aa3 concentration, Proc. SPIE 1431:251–262.ADSCrossRefGoogle Scholar
  19. 19.
    Matcher S. J., Elwell C. E., Cooper C. E., Cope M., Delpy D. T. 1995, Performance Comparison of Several Published Tissue Near-Infrared Spectroscopy Algorithms, Anal. Biochem. 227:54–68.CrossRefGoogle Scholar
  20. 20.
    Jöbsis F. F. 1977, Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science 198:1264–1267.ADSCrossRefGoogle Scholar
  21. 21.
    Inagaki M., Tamura M. 1993, Preparation and Optical Characteristics of Hemoglobin-Free Isolated Perfused Rat Head In Situ, J. Biochem. 113:650–657.Google Scholar
  22. 22.
    Tamura M. 1993, Non-invasive monitoring of the redox state of cytochrome oxidase in living tissue using near-infrared laser lights, Jpn. Circ. J. 57:817–24.CrossRefGoogle Scholar
  23. 23.
    Piantadosi C. A. 1993, Absorption Spectroscopy for Assessment of Mitochondrial Function in Vivo, Methods Toxicol. 2:107–126.Google Scholar
  24. 24.
    Piantadosi C. A., Sylvia A. L. 1984, Cerebral cytochrome aa 3 inhibition by cyanide in bloodless rats, Toxicology 33:67–79.CrossRefGoogle Scholar
  25. 25.
    Tamura M. 1992, Protective effects of a PG12 analogue OP-2507 on hemorrhagic shock in rats, Jpn. Circ. J. 56:366–375.CrossRefGoogle Scholar
  26. 26.
    Wray S., Cope ML, Delpy D. T., Wyatt J. S., Reynolds E. O. R. 1988, Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation, Biochim. Biophys. Acta 933:184–192.CrossRefGoogle Scholar
  27. 27.
    Kurth C. D., Steven J. M., Benaron D., Chance B. 1993, Near-infrared monitoring of the cerebral circulation, J Clin Monit 9:163–70.CrossRefGoogle Scholar
  28. 28.
    Cooper C. E., Elwell C. E., Meek J. H., Matcher S. J., Wyatt J. S., Cope M., Delpy D. T. 1996, The non-invasive measurement of absolute cerebral deoxyhaemoglobin concentration and mean optical pathlength in the neonatal brain by second derivative near infrared spectroscopy, Pediatr. Res. In press.Google Scholar
  29. 29.
    Chance B., Hollunger G. 1963, Inhibition of electron and energy transfer in mitochondria, 1; Effects of amytal, thiopental, rotenone, progesterone and methylone glycol, J. Biol. Chem. 278:418–431.Google Scholar
  30. 30.
    Fujii T. 1991, Profiles of percent reduction of cytochromes in guinea pig hippocampal brain slices in vitro, Brain Res 540:224–8.CrossRefGoogle Scholar
  31. 31.
    Hatefi Y. 1968, Flavoproteins of the electron transport system and the site of action of amytal, rotenone, and piericidin A, Proc. Natl. Acad. Sci. USA 60:733–740.ADSCrossRefGoogle Scholar
  32. 32.
    Hoshi Y., Tamura M. 1993, Dynamic changes in cerebral oxygenation in chemically induced seizures in rats: study by near-infrared spectrophotometry, Brain Res 603:215–21.CrossRefGoogle Scholar
  33. 33.
    McCormack J. G. 1985, Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria, Biochem. J. 231:581–595.Google Scholar
  34. 34.
    Wilson D. F., Erecinska M., Drown C, Silver I. A. 1979, The oxygen dependence of cellular energy metabolism, Archiv. Biochem. Biophys. 195:485–493.CrossRefGoogle Scholar
  35. 35.
    Wilson D. F., Rumsey W. L., Green T. J., Vanderkooi J. M. 1988, The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration, J. Biol. Chem. 263:2712–2718.Google Scholar
  36. 36.
    Hampson N. B., Camporesi E. M., Stolp B. W., Moon R. E., Shook J. E., Gabriel J. A., Piantadosi C. A. 1990, Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans, J. Appl. Physiol. 69:907–913.Google Scholar
  37. 37.
    Sylvia A. L., Piantadosi C. A., Jöbsis-VanderVliet F. F. 1986, Cerebral bioenergetics and in vivo cytochrome c oxidase redox relationships, Adv. Exp. Med. Biol. 191:815–821.CrossRefGoogle Scholar
  38. 38.
    Edwards A. D., Brown G. C, Cope M., Wyatt J. S., McCormick D. C., Roth S. C., Delpy D. T., Reynolds E. O. R. 1991, Quantification of changes in the concentration of cerebral oxidised cytochrome oxidase, J. Appl. Physiol. 71:1907–1913.Google Scholar
  39. 39.
    Ferrari M., de Blasi R., Safoue F., Wei Q., Zaccanti G. 1993, Towards human brain near infrared imaging: time resolved and unresolved spectroscopy during hypoxic hypoxia, Adv. Exp. Biol. Med. 333:21–31.CrossRefGoogle Scholar
  40. 40.
    Bashford C. L., Barlow C. H., Chance B., Haselgrove J. 1980, The oxidation-reduction state of cytochrome oxidase in freeze-trapped gerbil brain, FEBS Lett. 113:78–80.CrossRefGoogle Scholar
  41. 41.
    Hazeki O., Seiyama A., Tamura M. 1987, Near-infrared spectrophotometric monitoring of haemoglobin and cytochrome a, a3 in situ, Adv. Exp. Med. Biol. 215:283–289.CrossRefGoogle Scholar
  42. 42.
    Jones D. P. 1986, Intracellular diffusion gradients of O2 and ATP, Am. J. Physiol. 250:C663–C675.Google Scholar
  43. 43.
    Brown G. C. 1995, Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase, FEBS Lett. 369:136–139.CrossRefGoogle Scholar
  44. 44.
    Brown G. C, Cooper C. E. 1994, Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal cytochrome oxidase respiration by competing with oxygen at cytochrome oxidase, FEBS Lett. 356:295–298.CrossRefGoogle Scholar
  45. 45.
    Siesjo B. K. 1978 Brain Energy Metabolism, John Wiley & Sons, Chichester.Google Scholar
  46. 46.
    Sylvia A. I., Piantadosi C. A. 1988, O2 dependance of in vivo brain cytochrome redox responses and energy metabolism in bloodless rats, J. Cereb. Blood Flow Metab. 8:163–172.CrossRefGoogle Scholar
  47. 47.
    Ferrari M, Williams M. A., Wilson D. A., Thakor N., Traystman R. J., Hanley D. F. 1995, Cat brain cytochrome-c oxidase redox changes induced by hypoxia after blood-fluorocarbon exchange transfusion, Am. J. Physiol. 269:H417–H424.Google Scholar
  48. 48.
    Brown G. C., Crompton M., Wray S. 1991, Cytochrome oxidase content of rat brain during development, Biochim. Biophys. Acta 1057:273–275.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • C. E. Cooper
    • 1
  • M. Cope
    • 2
  • V. Quaresima
    • 3
  • M. Ferrari
    • 3
  • E. Nemoto
    • 5
  • R. Springett
    • 2
  • S. Matcher
    • 2
  • P. Amess
    • 4
  • J. Penrice
    • 4
  • L. Tyszczuk
    • 4
  • J. Wyatt
    • 4
  • D. T. Delpy
    • 2
  1. 1.Department of Biological and Chemical SciencesUniversity of EssexColchester, EssexUK
  2. 2.Department of Medical Physics and BioengineeringUniversity College LondonLondonUK
  3. 3.Dip. Scienze e Tecnologie BiomedicheUniversita L’AquilaL’AquilaItaly
  4. 4.Department of PaediatricsUniversity College LondonLondonUK
  5. 5.Department of Anesthesiology and Critical Care Medicine, School of MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations