Signal Sources in PET

  • K. Herholz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 413)


Positron emission tomography (PET) is the most accurate and versatile tracer method to measure in-vivo physiological variables in human brain. Since only tracer amounts of indicator substances are used, not only blood flow and energy metabolism can be measured, but also neurotransmitter synthesis (e.g., dopa decarboxylase activity with 18F-6-fluoro-L-dopa) and neuroreceptor binding capacity (many tracers, most frequently labeled with 18F or 11C have been described, for comprehensive reviews see Frost, 1990, Stöcklin et al., 1992). Recently, experimental competition studies of receptor ligands with endogeneous ligand, released by pharmacological stimulation, have been performed successfully (Carson et al., 1995). Yet, this brief overview will concentrate on measurements of blood flow and energy metabolism that are of more direct relevance to optical imaging methods. Table 1 shows commonly used isotopes and tracers to measure cerebral blood flow (CBF), glucose metabolism (CMRGlu), and oxygen metabolism (CMRO2). The short half-life times permit application of significant doses (up to 200 MBq 18F, up to 5000 MBq 15O) resulting in low-noise images due to high countrates with effective whole body doses of less than 5 mSv (the value tolerated for investigations in normal volunteers by current german law, and 1/10 of the dose tolerated for yearly professional exposure). Modern tomographs acquire data three-dimensionally (without septa between planes) with high efficiency from the whole brain simultaneously (Townsend et al., 1991).


Positron Emission Tomography Positron Emission Tomography Measurement Local Cerebral Blood Flow Cerebral Blood Flow Change Brain Positron Emission Tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartlett, E.J., Brodie, J.D., Wolf, A.R, Christman, D.R., Laska, E., and Meissner, M., 1988, Reproducibility of cerebral glucose metabolic measurements in resting human-subjects, J. Cereb. Blood Flow Metab. 8:502–512.CrossRefGoogle Scholar
  2. Berridge, M.S., Adler, L.P., Nelson, A.D., Cassidy, E.H., Muzic, R.F., Bednarczyk, E.M., and Miraldi, F., 1991, Measurement of human cerebral blood-flow with [0-15]butanol and positron emission tomography, J. Cereb. Blood Flow Metab. 11:707–715.CrossRefGoogle Scholar
  3. Carson, R.E., Breier, A., deBartolomeis, A.; Saunders, R., Su, T.P., Schmall, B., Der, M.G., Picker, D., Eckelman, W.C., 1995. Quantification of amphetamine-induced dopamine release with 11C-raclopride and continuous infusion. J. Cereb. Blood Flow Metab. 15 (Suppl. 1), S123.Google Scholar
  4. Cherry, S.R., Woods, R.P., Hoffman, E.J., and Mazziotta, J.C., 1993, Improved detection of focal cerebral blood-flow changes using 3-dimensional positron emission tomography, J. Cereb. Blood Flow Metab. 13:630–638.CrossRefGoogle Scholar
  5. Cherry, S.R., Woods, R.R, and Mazziotta, J.C. 1993, Improved signal-to-noise in activation studies by exploiting the kinetics of oxygen-15-labeled water, J. Cereb. Blood Flow Metab. 13(1):S714.Google Scholar
  6. Fox, P.T., Mintun, M.A., Raichle, M.E., and Herscovitch P., 1984, A noninvasive approach to quantitative functional brain mapping with h-2-15-o and PET, J. Cereb. Blood Flow Metab. 4:329–333.CrossRefGoogle Scholar
  7. Fox, P.T., and Raichle, M.E., 1986, Focal physiological uncoupling of cerebral blood flow and oxidativem metabolism during somatosensory stimulation in human subjects, Proc. Natl. Acad. Sci. USA 83:1140–4.ADSCrossRefGoogle Scholar
  8. Frackowiak, R.S.J., Lenzi, G.L., Jones, T., and Heather, J.D., 1980, Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and PET: theory, procedure, and normal values, J. Comput. Assist. Tomogr. 4:727–736.CrossRefGoogle Scholar
  9. Friston, K.K., 1993, Charcterizing focal and distributed physiolgical changes with neuroimaging. In: Uemuera, K., Lassen, N.A., T. Jones, and Kanno, I., Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET, Elsevier Science Publ., pp. 573-588.Google Scholar
  10. Frost, J.J., 1990. Quantitative neuroimaging: Neuroreceptors, neurotransmitters, and enzymes. Raven Press, New York.Google Scholar
  11. Heiss, W.D., Pawlik, G., Herholz, K., Wagner, R., Göldner, H., and Wienhard, K., 1984, Regional kinetic constants and cererbral metabolic rate for glucose in normal human volunteers determined by dynamic positron emisssion tomography of (18F)-2-fluoro-2-deoxy-D-glucose, J. Cereb. Blood Flow Metab. 4:212–223.CrossRefGoogle Scholar
  12. Herholz, K., Pietrzyk, U., Karbe, H., Wurker, M., Wienhard, K., and Heiss, W.D., 1994, Individual metabolic anatomy of repeating words demonstrated by MRI-guided positron emission tomography, Neurosci. Lett. 182:47–50.Google Scholar
  13. Herholz, K., Pietrzyk, U., Wienhard, K, Hebold, I., Pawlik, G., Wagner, R., Holthoff, V., Klinkhammer, P., and Heiss, W.D, 1989, Regional cerebral blood-flow measurement with intravenous [O-15]water bolus and [F-18]-fluoromethane inhalation, Stroke 20:1174–1181.CrossRefGoogle Scholar
  14. Herscovitch, P, and Raichle M.E., 1985, What is the correct value for the brain — blood partition-coefficient for water? J. Cereb. Blood Flow Metab. 5:65–69.CrossRefGoogle Scholar
  15. Herscovitch, P., Raichle, M.E., Kilbourn, M.R., and Welch, M.J., 1987, PET measurement of cerebral-blood-flow and permeability surface-area-product of water using [O-15] water and [C-11] butanol, J. Cereb. Blood Flow Metab. 7:527–542.CrossRefGoogle Scholar
  16. Holden, J.E., Eriksson, L., Roland, P.E., Stoneelander, S., Widen. L., and Kesselberg, M., 1988, Direct comparison of single-scan autoradiographic with multiple-scan least-squares fitting approaches to PET CMRO2 estimation, J. Cereb. Blood Flow Metab. 8:671–680.CrossRefGoogle Scholar
  17. Holden, J.E., Gatley, S.J., Hichwa, R.D., Shaugnessy, W.J., Nickels, R.J., and Polycn, R.E., 1981, Cerebral blood flow using PET measurements of fluoromethane kinetics, J. Nucl. Med. 22:1084–1088.Google Scholar
  18. Huang, S.C., Phelps, M.E., Hoffmann, E.J., Sideris, K., Selin, C.J., and Kuhel, D.E., 1980, Noninvasive determination of local cerebral metabolic rate of glucose in man, Am J. Physiol. 238:E69–E82.Google Scholar
  19. Iida, H., Kanno, I., Miura, S., Murakami, M., Takahashi, K., and Uemura, K., 1989, A determination of the regional brain blood partition-coefficient of water using dynamic positron emission tomography, J. Cereb. Blood Flow Metab. 9:874–885.CrossRefGoogle Scholar
  20. Kessler, J., Herholz, K., Grond, M., and Heiss, W.D., 1991, Impaired metabolic-activation in Alzheimers-disease — a PET study during continuous visual recognition, Neuropsychologia 29:229–243.CrossRefGoogle Scholar
  21. Kety, S.S., and Schmidt, C.F., 1948, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values, J. Clin. Invest. 27:476–484.CrossRefGoogle Scholar
  22. Knorr, U., Weder, B., Kleinschmidt, A., Wirrwar, A., Huang, Y.X., Herzog, H., and Seitz, R.J., 1993, Identification of task-specific rCBF changes in individual subjects — validation and application for PET, J. Comput. Assist. Tomogr. 17:517–528.CrossRefGoogle Scholar
  23. Lammertsma, A.A., Frackowiak, R.S.J., Hoffman, J.M., Huang, S.C., Weinberg, I.N., Dahlbom, M., Macdonald, N.S., Hoffman, E.J., Mazziotta, J.C, Heather, J.D., Forse, G.R., and Phelps, M.E., 1989, The (CO2)-O-15-buildup-technique to measure regional cerebral blood-flow and volume of distribution of water, J. Cereb. Blood Flow Metab. 9:461–470.CrossRefGoogle Scholar
  24. Lammertsma, A.A., and Jones, T., 1983, Correction for the presence of intravascular O-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain:1.description of the method, J. Cereb. Blood Flow Metab. 3:416–424.CrossRefGoogle Scholar
  25. Lammertsma, A.A., Martin, A.J., Friston, K.J., and Jones, T., 1992, Invivo measurement of the volume of distribution of water in cerebral gray-matter — effects on the calculation of regional cerebral blood-flow, J. Cereb. Blood Flow Metab. 12:291–295.CrossRefGoogle Scholar
  26. Larson, K.B., Markham, J., and Raichle, M.W., 1987, Tracer kinetic models for measuring cerebral blood flow using externally detected radiotracers, J. Cereb. Blood Flow Metab. 7:443–463.CrossRefGoogle Scholar
  27. Maquet, P., Dive, D., Salmon, E., von Frenckel, R., and Franck, G., 1990, Reproducibility of cerebral glucose-utilization measured by PET and the [F-18]-2-fluoro-2-deoxy-D-glucose method in resting, healthy human subjects, Eur. J. Nucl. Med. 16:267–273.CrossRefGoogle Scholar
  28. Meyer, E., et al, 1987, Estimation of CMRO2 by single-bolus-15O2-inhalation and dynamic PET, J. Cereb. Blood Flow Metab. 7:403–414.CrossRefGoogle Scholar
  29. Meier, P., and Zierler K.L., 1954, On the theory of the indicator-dilution-method for measurement of blood flow and volume. J. Appl. Physiol. 6:731–744.Google Scholar
  30. Mintun, M.A., Raichle, M.E., Martin, W.R.W, and Herscovitch, P., 1984, Brain oxygen utilization with O-15 radiotracers and PET, J. Nucl. Med. 25:177–187.Google Scholar
  31. Ohta, S., Meyer, E., Thompson, C.J., and Gjedde, A., 1992, Oxygen-consumption of the living human brain measured after a single inhalation of positron emitting oxygen, J. Cereb. Blood Flow Metab. 12:179–192.CrossRefGoogle Scholar
  32. Pawlik, G., Fink, G.R., Bauer, B., Neubauer, I., Iffland, R., Wienhard, K., and Heiss, W.D., 1993, Effect of tracer metabolism and diffusibility on dynamic and autoradiographic PET measurements of rCBF in ischemic cerebrovascular disease: 15O-butanol versus 15O-water, In: Uemuera, K., Lassen, N.A., T. Jones, and Kanno, I., Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET, Elsevier Science Publ., pp. 89-99.Google Scholar
  33. Raichle, M.E., Herscovitch, P., Mintun, M.A., Markham, J., and Martin, W.R.W., 1983, Brain blood flow measured with intravenous H2-O-15, 2. implementation and validation, J. Nucl. Med. 24:790–798.Google Scholar
  34. Reivich, M., Alavi, A., Wolf, A., Fowler J., Russell, J., Arnett, C, MacGregor, R.R., Shiue, C.Y., Atkins, H., Anand A., et al., 1985, Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C] deoxyglucose, J. Cereb. Blood Flow Metab. 5:179–92.CrossRefGoogle Scholar
  35. Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M.E., Ido, T., Casella, V., Fowler, J., Hoffman, E., Alavi, A., Som, P., and Sokoloff, I., 1979, The 18-F-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man, Circ. Res. 44:127–137.Google Scholar
  36. Roland, P.E., Eriksson, L., Stone-Elander, S., and Widen L., 1987, Does mental activity change the oxidative metabolism of the brain? J. Neurosci. 7:2373–89.Google Scholar
  37. Seitz, R.J., and Roland, P.E., 1992, Vibratory stimulation increases and decreases the regional cerebral blood-flow and oxidative-metabolism — a positron emission tomography (PET) study, Acta Neurol. Scand. 86:60–67.Google Scholar
  38. Silbersweig, D.A., Stern, E., Frith, C.D., Cahill, C., Schnorr, L., Grootoonk, S., Spinks, T., Clark, J., Frackowiak, R., and Jones, T., 1993, Detection of 30-second cognitive activations in single subjects with positron emission tomography — a new low-dose (H2O)-O-15 regional cerebral blood-flow 3-dimensional imaging technique, J. Cereb. Blood Flow Metab. 13:617–629.CrossRefGoogle Scholar
  39. Silbersweig, D.A., Stern, E., Schnorr, L., Frith, C.D., Ashburner, J., Cahill, C., Frackowiak, R.S.J., and Jones T., 1994, Imaging transient, randomly occurring neuropsychological events in single subjects with positron emission tomography — an event-related count rate correlational analysis, J. Cereb. Blood Flow Metab. 14:771–782.CrossRefGoogle Scholar
  40. Sokoloff, L., Reivich, M., Kennedy, C, Rosiersdes, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., and Shinohara, M., 1977, The <14C>deoxyglucose method for the measurement of local cerebral glucose utilization: theory procedure and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28:897–916.CrossRefGoogle Scholar
  41. Stöcklin, G., 1992. Tracers for metabolic imaging of brain and heart. Radiochemistry and radiopharmacology. Europ. J. Nucl. Med. 19:527–551.Google Scholar
  42. Townsend, D.W., Defrise, M., Geissbuhler, A., Spinks, T.J., Bailey, D.L., Gilardi, M.C., and Jones, T., 1991, Normalisation and reconstruction of PET data acquired by a multi-ring camera with septa retracted, Med. Prog. Technol. 17:223–8.Google Scholar
  43. Wienhard, K., Pawlik, G., Herholz, K., Wagner, R., and Heiss, W.D., 1985, Estimation of local cerebral glucose utilization by positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures, J. Cereb. Blood Flow Metab. 5:115–125.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • K. Herholz
    • 1
  1. 1.Neurologische Universitätsklinik und Max-Planck-Institut für neurologische ForschungKölnGermany

Personalised recommendations