Advertisement

What Do We Expect from Non-Invasive Functional Neuroimaging?

  • H.-J. Freund
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 413)

Abstract

The goal of neuroimaging techniques is to provide realistic maps of the neuronal populations that become active during particular functional tasks. Most non-invasive neuroimaging techniques (PET, fMRI, NIRS, optical imaging) measure regional cerebral blood flow or metabolism. The coupling between regional blood flow and local energy consumption was first shown by the deoxyglucose method (Sokoloff et al., 1977). How the activity related vascular and metabolic recruitment reflects the underlying synpatic processes was studied by optical reflectance methods (Grinvald et al., 1986, 1991 and their relation to electrophysiological measures (Frostig et al., 1990; Narayan et al., 1994).

Keywords

Human Motor Cortex Global Cerebral Blood Flow Deoxyglucose Method Motor Task Activation Magnetic Field Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azari, N.P., Pettigrew, K.D., Schapiro, M.B., Haxby, J.V., Grady, C.L., Pietrini, P., Salerno, J.A., Heston, L.L., Rapoport, S.I., Horwitz, B. 1993. Early detection of Alzheimer’s disease: A statistical approach using positron emission tomographic data. J. Cereb. Blood Flow Metab. 13, 438–447.589, 279-290.CrossRefGoogle Scholar
  2. Baron, J.C., Frackowiack, R.S.J., Herholz, K., Jones, T., Lammertsma, A.A., Mazoyer, B., Wienhard, K. 1989. Use of PET methods for measurement of cerebral energy metabolism and hemodynamics in cerebrovascular disease. J. Cereb. Blood Flow Metab. 9, 723–742.CrossRefGoogle Scholar
  3. Boecker, H., Kleinschmidt, A., Requardt, M., Hänicke, W., Merboldt, K.D., Frahm, J. 1994a. Functional cooperativity of human cortical motor areas during self-paced simple finger movements. Brain 117:1231–39d.CrossRefGoogle Scholar
  4. Carman, G.J., Drury, H.A., van Essen, D.C. 1995. Computational methods for reconstructing and unfolding the cerebral cortex. Cerebral Cortex 5:506–517.CrossRefGoogle Scholar
  5. Cohen, M.S., Bookheimer, S.Y. 1994. Localization of brain function using magnetic resonance imaging. Trends Neurosci. 17:268–277.CrossRefGoogle Scholar
  6. Fox, P.T., Raichle, M.E., Mintun, M.A., Dence, C. 1988. Non-oxidative glucose consumption during focal physiologic neural activity. Science 241:462–464.ADSCrossRefGoogle Scholar
  7. Friston, K.J., Frith, CD., Turner, R., Frackowiak, R.S.J. 1995. Characterizing evoked hemodynamics with fMRI. Neuroimage 2, 157–165.CrossRefGoogle Scholar
  8. Friston, K.J., Frith, CD., Frackowiak, R.S.J., Turner, R. 1995. Characterizing dynamic brain responses with fMRI: a multivariate approach. Neuroimage 2, 166–172.CrossRefGoogle Scholar
  9. Frostig, R.D., Lieke, E.E., Ts’o, D.Y., Grinvald, A. 1990. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of instrinsic signals. Proc. Natl. Acad. Sc. USA 87:6082–6086.ADSCrossRefGoogle Scholar
  10. George, J.S., Aine, C.J., Mosher, J.C., Schmidt, D.M., Ranken, D.M., Schlitt, H.A., Wood, C.C., Lewine, J.D., Sanders, J.A., Belliveau, J.W. 1995. Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging and functional magnetic resonance imaging. J. Clinical Neurophysiology 12:406–431.CrossRefGoogle Scholar
  11. Giesen, H.-J. v., Schlaug, G., Steinmetz, H., Benecke, R., Freund, H.-J., Seitz, R. 1994. Cerebral network underlying unilateral motor neglect: evidence from positron emission tomography. J. Neurological Sciences 125, 29–38.CrossRefGoogle Scholar
  12. Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, CD., Wiesel, T.N. 1986. Functional architecture of cortex revealed by optical imaging of instrinsic signals. Nature 324:361–364.ADSCrossRefGoogle Scholar
  13. Grinvald, A., Frostig, R.D., Siegel, R.M., Bartfeld, E. 1991. High-resolution optical imaging of functional brain architecture in the awake monkey. Proc. Natl. Acad. Sci. USA 88:11559–11563.ADSCrossRefGoogle Scholar
  14. Haglund, M.M., Ojemann, G.A., Hochman, D.W. 1992. Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 358:668–671.ADSCrossRefGoogle Scholar
  15. Heiss, W.-D., Huber, M., Fink, G.R., Herholz, K., Pietrzyk, U., Wagner, R., Wienhard, K. 1992. Progressive derangement of periinfarct viable tissue in ischemic stroke. J. Cereb. Bloof Flow Metab. 12, 193–203.CrossRefGoogle Scholar
  16. Herholz, K., Heindel, W., Luyten, P.R., den Hollander, J.A., Pietrzyk, U., Voges, J., Kugel, H., Friedmann, G., Heiss, W.-D. 1992. In vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann. Neurol. 31, 319–327.CrossRefGoogle Scholar
  17. Leniger-Follert, A., Hossmann, K. 1979. Simultaneous measurement of microflow and evoked potentials in the somatomotor cortex of the cat brain during specific sensory activation. Pfluegers Arch. 380:85–89.CrossRefGoogle Scholar
  18. Narayan, S.M., Santori, E.M., Toga, A.W. 1994. Mapping functional activity in rodent cortex using optical intrinsic signals. Cerebral Cortex 4:195–204.CrossRefGoogle Scholar
  19. Sanes, J.N., Donoghue, J.P., Thangaraj, V., Edelman, R.R., Warach, S. 1995. Shared neural substrates controlling hand movements in human motor cortex. Science 268:1775–77.ADSCrossRefGoogle Scholar
  20. Seitz, R., Huang, Y., Knorr, U., Teilmann, L., Herzog, H., Freund, H.-J. 1995. Large-scale plasticity of the human motor cortex. NeuroReport 6, 742–744.CrossRefGoogle Scholar
  21. Sitzer, M., Knorr, U., Seitz, R.J. 1994. Cerebral hemodynamics during sensorimotor activation in humans. J. Appl. Physiol. 77, 2804–2811.Google Scholar
  22. Sokoloff, L., Reivich, M. Kennedy, C, des Rosiers, M.H., Patalak, C.S., Pettigrew, K.D., Sakurada, O., Shinohara, J. 1977. The 14C-Deoxyglucose method for the measurement of local cerebral glucose utilization. Theory, procedure and normal values in the conscious and anestetized albino rat. J. Neurochem. 28:897–916.CrossRefGoogle Scholar
  23. Steinmetz, H., Seitz, R.J. 1991. Functional anatomy of language processing: Neuroimaging and the problem of individual variability. Neuropsychologia 29, 1149–1161.CrossRefGoogle Scholar
  24. Swanson, L.W. 1995. Mapping the human brain: past, present and future. TINS 18:471–474.Google Scholar
  25. Turner, R. 1994. Magnetic resonance imaging of brain functions. Ann. Neurol. 35:637–638.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • H.-J. Freund
    • 1
  1. 1.Department of NeurologyDüsseldorfGermany

Personalised recommendations