Advertisement

Changes of Blood Flow and Oxygen Consumption in Visual Cortex of Living Humans

  • Sean Marrett
  • Albert Gjedde
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 413)

Abstract

The classical model of neuronal metabolism holds that changes in local neuronal activity are reflected in changes of blood flow (rCBF) and oxygen metabolism (rCMRO2). This model has been examined in human PET [1,2] and animal [3] studies.

Keywords

Visual Cortex Blood Oxygen Level Dependent Primary Visual Cortex Visual Stimulation Blood Oxygen Level Dependent Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Fox, M. Raichle, M. Mintun, and C. Dence. Nonoxidative glucose consumption during focal physiologic neural activity. Sczence, 241:462–464, 1988.ADSCrossRefGoogle Scholar
  2. 2.
    P. Fox and M. Raichle. Focal physiological uncoupling of blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proceedings of the National Academy of Sciences, 83:1140–1144, 1986.ADSCrossRefGoogle Scholar
  3. 3.
    R. F. Ackermann and J. L. Lear. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabelled fluorodeoxyglucose and glucose. Journal of Cerebral Blood Flow and Metabolism, 9(6):774–785, 1989.CrossRefGoogle Scholar
  4. 4.
    S. Marrett, H. Fujita, E. Meyer, L. Ribeiro, A. C. Evans. H. Kuwabara and A. Gjedde. Stimulus specific increase of oxidative metabolism in human visual cortex. Quantification of Brain Function, pg. 217–228, 1993.Google Scholar
  5. 5.
    G. M. Hathout, K. A. Kirlew, G. J. So, D. R. Hamilton, J. X. Zhang, U. Sinha, S. Sinha, J. Sayre, D. Gozal, R. M. Harper, and a. 1. et. MR imaging signal response to sustained stimulation in human visual cortex. Journal of Magnetic Resonance Imaging, 4(4):53743, Jul–Aug 1994.CrossRefGoogle Scholar
  6. 6.
    G. Kruger, J. Frahm, K. Merboldt, and A. Kleinschmidt. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activa tion in man. In Proceedings of the Annual Meeting, Nice, France, August 1995. Society for Magnetic Resonance.Google Scholar
  7. 7.
    R. B. H. Tootell, M. S. Silverman, S. L. Hamilton, E. Switkes, R. L. De-Valois. Functional anatomy of macaque striate cortex. V. Spatial frequency. Journal of Neuroscience, 8(5):1610–1624, 1988.Google Scholar
  8. 8.
    S. Ohta, E. Meyer, C. Thompson, and A. Gjedde. Oxygen consumption of the living human brain measured during a single inhalation of radioactive oxygen. Journal of Cerebral Blood Flow and Metabolism, 12:179–192, 1992.CrossRefGoogle Scholar
  9. 9.
    D. Collins, P. Neelin, T. Peters, and A. Evans. Automatic 3d intersubject registration of MR volumetric data in standardized talairach space. Journal of Computer Assisted Tomography, 18(2):192–205, 1994.CrossRefGoogle Scholar
  10. 10.
    J. Talairach and P. Tournoux. Co-planar stereotactic atlas of the human brain:3-Dimensional proportional system. Thieme Verlag, Stuttgart/New York, 1988.Google Scholar
  11. 11.
    R. Woods, J. Mazziotta, and S. Cherry. MRI-PET registration with an automated algorithm. Journal of Computer Assisted Tomography, 17(4):536–546, 1993.CrossRefGoogle Scholar
  12. 12.
    P. Fox and M. Raichle. Stimulus rate determines regional blood flow in striate cortex. Annals of Neurology, 17(3):303–305, March 1985.CrossRefGoogle Scholar
  13. 13.
    K. Worsley, A. Evans, S. Marrett, and P. Neelin. Determining the number of statistically significant areas of activation in subtracted activation studies from PET. Journal of Cerebral Blood Flow and Metabolism, 12(6):900–918, 1992. au14_P. Fox and M. Raichle. Stimulus rate dependance of regional blood flow in human striate cortex, demonstrated by positron emission tomography. Journal of Neurophysyiology, 51:1109–1120, 1984.CrossRefGoogle Scholar
  14. 15.
    F. Caramia, R. Tootell, K. Kwong, J. Reppas, B. Rosen, and B. Jenkins. Comparison of MRI signal changes produced by stimuli selective for blob versus inter-blob cells in vl. In Proceedings of the Annual Meeting, Nice, France, August 1995. Society for Magnetic Resonance.Google Scholar
  15. 16.
    P. A. Bardelting, T. L. Davis, K. K. Kwong, P. T. Fai, A. Jiang, J. R. Baker, J. W. Bellrean, R. M. Weiskoff and B. R. Rosen. fMRI and PET demonstrate Sustained Blood oxygenation and flow enhancement during extended Visual Stimulation Duration. Proceeding of The Society of Magnetic Resonance, Nice, France 1995.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Sean Marrett
    • 1
  • Albert Gjedde
    • 1
  1. 1.McConnell Brain Imaging CenterMontreal Neurological InstituteMontrealCanada

Personalised recommendations