Dynamic NMR Studies of Perfusion and Oxidative Metabolism during Focal Brain Activation

  • J. Frahm
  • G. Krueger
  • K. D. Merboldt
  • A. Kleinschmidt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 413)


Studies of functional activation in the human brain by positron emission tomography suggest the occurrence of an uncoupling of perfusion and oxidative metabolism in response to sudden functional challenge (Fox and Raichle, 1986; Fox et al., 1988). Since the observed enhancement of cerebral blood flow was without a corresponding adjustment of oxygen consumption — at least in the investigated time span — the venous blood pool should be rapidly hyperoxygenated in areas of neural activity. More recently, the resulting fall of paramagnetic deoxyhemoglobin has been confirmed and exploited for noninvasive mapping of human brain function by nuclear magnetic resonance (NMR). A decrease in the concentration of this endogeneous “contrast agent” increases the intensity of gradient-echo NMR signals in activated volumes (Bandettini et al, 1992; Blamire et al, 1992; Frahm et al., 1992; Kwong et al., 1992; Ogawa et al., 1992). Here, we specifically address the temporal evolution of the relationship between perfusion and oxidative metabolism in human primary visual cortex during prolonged visual stimulation. The circulatory and metabolic consequences of functional activation are assessed by complimentary measurements of alterations in
  • cerebral energy metabolism using quantitative localized proton NMR spectros-copy,

  • oxygen utilization using both NMR imaging and spectroscopy sequences sensitized to changes in cerebral blood oxygenation (CBO), and

  • flow (velocity) using flow-sensitized cross-sectional NMR imaging.


Nuclear Magnetic Resonance Oxidative Metabolism Visual Stimulation Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandettini, P.A., Wong, E.C., Hinks, R.S, Tikofsky, R.S., and Hyde, J.S., 1992, Time course EPI of human brain function during task activation, Magn. Reson. Med. 25:390–397.CrossRefGoogle Scholar
  2. Bandettini, P.A., Jesmanowicz, A., Wong, E.C., Hyde, J.S., 1993, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med. 30:161–173.CrossRefGoogle Scholar
  3. Blamire, A.M., Ogawa, S., Ugurbil, K., Rothman, D., McCarthy, G., Eilermann, J.M., Hyder, F., Rattner, Z., and Shulman, R.G., 1992, Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging, Proc. Natl. Acad. Sci. USA. 89:11069–11073.ADSCrossRefGoogle Scholar
  4. Chen, W., Novotny, E., Zhu, X.H., Rothman, D., and Shulman, R.G., 1993, Localized 1H NMR measurement of glucose consumption in human brain during visual stimulation, Proc. Natl. Acad. Sci. USA 90:9896–9900.ADSCrossRefGoogle Scholar
  5. Fox, P.T., and Raichle, M.E., 1986, Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects, Proc. Natl. Acad. Sci. USA 83:1140–1144.ADSCrossRefGoogle Scholar
  6. Fox, P.T., Raichle, M.E., Mintun, M.A., and Dence, C, 1988, Nonoxidative glucose consumption during focal physiologic neural activity, Science 241:462–464.ADSCrossRefGoogle Scholar
  7. Frahm, J., Michaelis, T., Merboldt, K.D., Bruhn, H., Gyngell, M.L., and Haenicke, W., 1990, Improvements in localized 1H-NMR spectroscopy of human brain. Water suppression, short echo times, and 1 mL resolution, J. Magn. Reson. 90:464–73.Google Scholar
  8. Frahm, J., Bruhn, H., Merboldt, K.D., and Haenicke, W, 1992, Dynamic MRI of human brain oxygenation during rest and photic stimulation, J. Magn. Reson. Imag. 2:501–505.CrossRefGoogle Scholar
  9. Frahm, J., Merboldt, K.D., and Haenicke, W, 1993, Functional MRI of human brain activation at high spatial resolution, Magn. Reson. Med. 29:139–144.CrossRefGoogle Scholar
  10. Frahm, J., Merboldt, K.D., Haenicke, W., Kleinschmidt, A., and Boecker, H., 1994, Brain or vein — oxygenation or flow? On signal physiology in functional MRI of human brain activation, NMR Biomed. 7:45–53.CrossRefGoogle Scholar
  11. Frahm, J., Krueger, G., Merboldt, K.D., and Kleinschmidt, A., 1995, Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man, Magn. Reson. Med., in press.Google Scholar
  12. Hathout, G.M., Kirlew, K.A.T., So, G.J.K., Hamilton, D.R., Zhang, J.X., Sinha, U., Sinha, S., Sayre, J., Gozal, D., Harper, R.M., and Lufkin, R.B., 1994, MR imaging signal response to sustained stimulation in human visual cortex, J. Magn. Reson. Imag. 4:537–543.CrossRefGoogle Scholar
  13. Kleinschmidt, A., Requardt, M., Merboldt, K.D., and Frahm, J., 1995, On the use of temporal correlation coefficients for magnetic resonance mapping of functional brain activation. Individualized thresholds and spatial response delineation, Intern. J. Imag. Sci. Technol., in press.Google Scholar
  14. Krueger, G., 1995, Entwicklung und Anwendung der funktionellen NMR-Tomografie und Spektroskopie zur Untersuchung des menschlichen Hirns in vivo, Diploma Thesis, Braunschweig.Google Scholar
  15. Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H.M., Brady, T.J., and Rosen, B.R., 1992, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc. Natl. Acad. Sci. USA 89:5675–5679.ADSCrossRefGoogle Scholar
  16. Merboldt, K.D., Bruhn, H., Haenicke, W., Michaelis, T., and Frahm, J., 1992, Decrease of glucose in the human visual cortex during photic stimulation, Magn. Reson. Med. 25:187–194.CrossRefGoogle Scholar
  17. Michaelis, T., Merboldt, K.D., Bruhn, H., Haenicke, W., and Frahm, J., 1993, Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra, Radiology 187:219–27.Google Scholar
  18. Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H., and Ugurbil, K., 1992, Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging, Proc. Natl. Acad. Sci. USA 89:5951–5955.ADSCrossRefGoogle Scholar
  19. Pellerin, L., and Magistretti, P.J., 1994, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. USA 91:10625–10629.ADSCrossRefGoogle Scholar
  20. Prichard, J., Rothman, D., Novotny, E., Petroff, O., Kuwabara, T., Avison, M., Howseman, A., Hanstock, C, and Shulman, R.G., 1992, Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation, Proc. Natl. Acad. Sci. USA 88:5829–5831.ADSCrossRefGoogle Scholar
  21. Provencher, S.W., 1993, Estimation of metabolite concentrations from localized in vivo NMR spectra, Magn. Reson. Med. 30:672–679.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. Frahm
    • 1
  • G. Krueger
    • 1
  • K. D. Merboldt
    • 1
  • A. Kleinschmidt
    • 1
  1. 1.Biomedizinische NMR Forschungs GmbHMax-Planck-Institut für biophysikalische ChemieGöttingenGermany

Personalised recommendations