Understanding Functional Neuroimaging Methods Based on Neurovascular Coupling

  • Arno Villringer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 413)


Functional neuroimaging techniques are usually grouped according to the employed apparatus into functional magnetic resonance imaging techniques (fMRI), nuclear medicine approaches such as single photon emission tomography (SPET) or positron emission tomography (PET), and optical approaches (measurement of intrinsic signals, near infrared spectroscopy (NIRS)). However, the physiological parameters that are measured with these methods do not necessarily follow this technical classification. On the one hand, using different imaging modalities the same physiological parameters are measured and on the other hand, using the same imaging devices completely different physiological parameters can be assessed. The present article covers those functional neuroimaging methods which measure the vascular response to functional brain activation (PET, SPET, fMRI and NIRS). First, starting with the traditional grouping of these methods, it is outlined how the specific methods assess vascular changes associated with brain activation in order to localize brain function. Based on the understanding of the underlying physiological events, subsequently, a new classification of functional neuroimaging methods is proposed.


Positron Emission Tomography Cerebral Blood Flow Blood Oxygenation Level Dependent Regional Cerebral Blood Flow Mean Transit Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman JJ, Ewy CS, Kim SG, Shalwitz RA (1987) Deuterium magnetic resonance in vivo: the measurement of blood flow and tissue perfusion. Ann N Y Acad Sci 508:89–98.ADSCrossRefGoogle Scholar
  2. Andersen AR (1989) 99mTc-D, L-hexamethylene-propyleneamine oxime (99mTc-HMPAO): basic kinetic studies of a tracer of cerebral blood flow. Cerebrovasc Brain Metab Rev 1:288–318.Google Scholar
  3. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397.CrossRefGoogle Scholar
  4. Barranco D, Sutton LN, Florin S, Greenberg J, Sinnwell T, Ligeti L, McLaughlin AC (1989) Use of 19F NMR spectroscopy for measurement of cerebral blood flow: a comparative study using microspheres. J Cereb Blood Flow Metab 9:886–891.CrossRefGoogle Scholar
  5. Bartfeld E, Grinvald A (1992) Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc Natl Acad Sci USA 89:11905–11909.ADSCrossRefGoogle Scholar
  6. Belliveau JW, Kennedy DN, Jr., McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719.ADSCrossRefGoogle Scholar
  7. Benaron DA, Stevenson DK (1993) Optical time-of-flight and absorbance imaging of biologic media. Science 259:1463–1466.ADSCrossRefGoogle Scholar
  8. Berridge MS, Adler LP, Nelson AD, Cassidy EH, Muzic RF, Bednarczyk EM, Miraldi F (1991) Measurement of human cerebral blood flow with [15O]butanol and positron emission tomography. J Cereb Blood Flow Metab 11:707–715.CrossRefGoogle Scholar
  9. Biersack HJ, Linke D, Brassel F, Reichmann K, Kurthen M, Durwen HF, Reuter BM, Wappenschmidt J, Stefan H (1987) Technetium-99m HM-PAO brain SPECT in epileptic patients before and during unilateral hemispheric anesthesia (Wada test): report of three cases. J Nucl Med 28:1763–1767.Google Scholar
  10. Binder JR, Rao SM, Hammeke TA, Yetkin FZ, Jesmanowicz A, Bandettini PA, Wong EC, Estkowski LD, Goldstein MD, Haughton VM, et al (1994) Functional magnetic resonance imaging of human auditory cortex [see comments]. Ann Neurol 35:662–672.CrossRefGoogle Scholar
  11. Blamire AM, Ogawa S, Ugurbil K, Rothman D, McCarthy G, Ellermann JM, Hyder F, Rattner Z, Shulman RG (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA 89:11069–11073.ADSCrossRefGoogle Scholar
  12. Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431.ADSCrossRefGoogle Scholar
  13. Cesaro P, Mann MW, Moretti JL, Defer G, Roualdes B, Nguyen JP, Degos JD (1991) Central pain and thalamic hyperactivity: a single photon emission computerized tomographic study. Pain 47:329–336.CrossRefGoogle Scholar
  14. Chance B, Cohen P, Jobsis F, Schoener B (1962) Science 137:499–508.ADSCrossRefGoogle Scholar
  15. Chance B, Kang K, He L, Weng J, Sevick E (1993) Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions. Proc Natl Acad Sci U S A 90:3423–3427.ADSCrossRefGoogle Scholar
  16. Cope M, Delpy DT (1988) System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput 26:289–294.CrossRefGoogle Scholar
  17. Corbett RJ, Laptook AR, Olivares E (1991) Simultaneous measurement of cerebral blood flow and energy metabolites in piglets using deuterium and phosphorus nuclear magnetic resonance. J Cereb Blood Flow Metab 11:55–65.CrossRefGoogle Scholar
  18. Crosson B, Williamson DJ, Shukla SS, Honeyman JC, Nadeau SE (1994) A technique to localize activation in the human brain with technetium-99m-HMPAO SPECT: a validation study using visual stimulation. J Nucl Med 35:755–763.Google Scholar
  19. Demonet JF, Celsis P, Agniel A, Cardebat D, Rascol O, Marc Vergnes JP (1994) Activation of regional cerebral blood flow by a memorization task in early Parkinson’s disease patients and normal subjects. J Cereb Blood Flow Metab 14:431–438.CrossRefGoogle Scholar
  20. Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45.CrossRefGoogle Scholar
  21. Di Piero V, Ferracuti S, Sabatini U, Pantano P, Cruccu G, Lenzi GL (1994) A cerebral blood flow study on tonic pain activation in man. Pain 56:167–173.CrossRefGoogle Scholar
  22. Dirnagl U, Villringer A, Gebhardt R, Haberl RL, Schmiedek P, Einhaupl KM (1991) Three-dimensional reconstruction of the rat brain cortical microcirculation in vivo. J Cereb Blood Flow Metab 11:3 53–360.CrossRefGoogle Scholar
  23. Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, Warach S (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192:513–520.Google Scholar
  24. Eichung JO, Raichle ME, Grubb RL, Jr., Ter Pogossian MM (1974) Evidence of the limitations of water as a freely diffusible tracer in brain of the rhesus monkey. Circ Res 35:358–364.CrossRefGoogle Scholar
  25. Eleff SM, Schnall MD, Ligetti L, Osbakken M, Subramanian VH, Chance B, Leigh JSJ (1988) Concurrent measurements of cerebral blood flow, sodium, lactate, and high-energy phosphate metabolism using 19F, 23Na, 1H, and 31P nuclear magnetic resonance spectroscopy. Magn Reson Med 7:412–424.CrossRefGoogle Scholar
  26. Elwell CE, Owen Reece H, Cope M, Wyatt JS, Edwards AD, Delpy DT, Reynolds EO (1993) Measurement of adult cerebral haemodynamics using near infrared spectroscopy. Acta Neurochir Suppl Wien 59:74–80.Google Scholar
  27. Elwell CE, Cope M, Edwards AD, Wyatt JS, Delpy DT, Reynolds EO (1994) Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. J Appl Physiol, 77, 2753–2760.Google Scholar
  28. Ernst T, Hennig J (1994) Observation of a fast response in functional MR. Magn Reson Med 32:146–149.CrossRefGoogle Scholar
  29. Ewing JR, Branch CA, Fagan SC, Helpern JA, Simkins RT, Butt SM, Welch KM (1990) Fluorocarbon-23 measure of cat cerebral blood flow by nuclear magnetic resonance. Stroke 21:100–106.CrossRefGoogle Scholar
  30. Fiat D, Ligeti L, Lyon RC, Ruttner Z, Pekar J, Moonen CT, McLaughlin AC (1992) In vivo 170 NMR study of rat brain during 1702 inhalation. Magn Reson Med 24:370–374.CrossRefGoogle Scholar
  31. Foster NL, Gilman S, Berent S, Sima AA, D’Amato C, Koeppe RA, Hicks SP (1992) Progressive subcortical gliosis and progressive supranuclear palsy can have similar clinical and PET abnormalities. J Neurol Neurosurg Psychiatry 55:707–713.CrossRefGoogle Scholar
  32. Fox PT, Mintun MA, Raichle ME, Herscovitch P (1984) A noninvasive approach to quantitative functional brain mapping with H2 (15)O and positron emission tomography. J Cereb Blood Flow Metab 4:329–333.CrossRefGoogle Scholar
  33. Fox PT, Mintun MA, Raichle ME, Miezin FM, Allman JM, Van Essen DC (1986) Mapping human visual cortex with positron emission tomography. Nature 323:806–809.ADSCrossRefGoogle Scholar
  34. Frahm J, Bruhn H, Merboldt KD, Hanicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2:501–505.CrossRefGoogle Scholar
  35. Frahm J, Merboldt KD, Hanicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29:139–144.CrossRefGoogle Scholar
  36. Frahm J, Merboldt KD, Hänicke W, Kleinschmidt A, Boecker H (1994) Brain of vein — oxygenation of flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7:45–53.CrossRefGoogle Scholar
  37. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1991) Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11:690–699.CrossRefGoogle Scholar
  38. Frostig RD, Lieke EE, Ts’o DY, Grinvald A (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A 87:6082–6086.ADSCrossRefGoogle Scholar
  39. Gemmell HG, Evans NT, Besson JA, Roeda D, Davidson J, Dodd MG, Sharp PF, Smith FW, Crawford JR, Newton RH, et al (1990) Regional cerebral blood flow imaging: a quantitative comparison of technetium-99m-HMPAO SPECT with C15O2 PET. J Nucl Med 31:1595–1600.Google Scholar
  40. Giller CA, Purdy P, Lindstrom WW (1990) Effects of inhaled stable xenon on cerebral blood flow velocity. AJNR Am J Neuroradiol 11:177–182.Google Scholar
  41. Ginsberg MD, Lockwood AH, Busto R, Finn RD, Butler CM, Cendan IE, Goddard J (1982) A simplified in vivo autoradiographic strategy for the determination of regional cerebral blood flow by positron emission tomography: theoretical considerations and validation studies in the rat. J Cereb Blood Flow Metab 2:89–98.CrossRefGoogle Scholar
  42. Goldenberg G, Podreka I, Steiner M, Franzen P, Deecke L (1991) Contributions of occipital and temporal brain regions to visual and acoustic imagery-a spect study. Neuropsychologia 29:695–702.CrossRefGoogle Scholar
  43. Goldenberg G, Podreka I, Uhl F, Steiner M, Willmes K, Deecke L (1989) Cerebral correlates of imagining colours, faces and a map-I. SPECT of regional cerebral blood flow. Neuropsychologia 27:1315–1328.Google Scholar
  44. Grinvald A, Anglister L, Freeman JA, Hildesheim R, Manker A (1984) Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature 308:848–850.ADSCrossRefGoogle Scholar
  45. Grinvald A, Frostig RD, Siegel RM, Bartfeld E (1991) High-resolution optical imaging of functional brain architecture in the awake monkey. Proc Natl Acad Sci U S A 88:11559–11563.ADSCrossRefGoogle Scholar
  46. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–364.ADSCrossRefGoogle Scholar
  47. Gur D, Good WF, Wolfson SK, Jr., Yonas H, Shabason L (1982) In vivo mapping of local cerebral blood flow by xenon-enhanced computed tomography. Science 215:1267–1268.ADSCrossRefGoogle Scholar
  48. Haase A, Matthaei D, Hanicke W, Frahm J (1986) Dynamic digital subtraction imaging using fast low-angle shot MR movie sequence. Radiology 160:537–541.Google Scholar
  49. Haglund MM, Ojemann GA, Blasdel GG (1993) Optical imaging of bipolar cortical stimulation. J Neurosurg 78:785–793.CrossRefGoogle Scholar
  50. Haglund MM, Ojemann GA, Hochman DW (1992) Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 358:668–671.ADSCrossRefGoogle Scholar
  51. Hampson NB, Piantadosi CA (1990). Near-infrared optical responses in feline brain and skeletal muscle tissues during respiratory acid-base imbalance. Brain-Res. 519:249–54.CrossRefGoogle Scholar
  52. Hennig J, Ernst T, Speck O, Deuschl G, Feifel E (1994) Detection of brain activation using oxygenation sensitive functional spectroscopy. Magn Reson Med 31:85–90.CrossRefGoogle Scholar
  53. Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med 24:782–789.Google Scholar
  54. Herzog H, Seitz RJ, Tellmann L, Schlaug G, Kleinschmidt A, Nebeling B, Stocklin G, Müller Gartner HW (1994) Pharmacokinetics and radiation dose of oxygen-15 labelled butanol in rCBF studies in humans. Eur J Nucl Med 21:138–143.CrossRefGoogle Scholar
  55. Hill DK, Keynes RD (1949) J Physiol (London) 108:278–281.Google Scholar
  56. Hill TC, Holman BL, Lovett R, O’Leary DH, Front D, Magistretti P, Zimmerman RE, Moore S, Clouse ME, Wu JL, Lin TH, Baldwin RM (1982) Initial experience with SPECT (single-photon computerized tomography) of the brain using N-isopropyl 1-123 p-iodoamphetamine: concise communication. J Nucl Med 23:191–195.Google Scholar
  57. Hoshi Y, Tamura M (1993) Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci Lett 150:5–8.CrossRefGoogle Scholar
  58. Hurtig RR, Hichwa RD, O’Leary DS, Boles Ponto LL, Narayana S, Watkins GL, Andreasen NC (1994) Effects of timing and duration of cognitive activation in [150]water PET studies. J Cereb Blood Flow Metab 14:423–430.CrossRefGoogle Scholar
  59. Ingvar M, Eriksson L, Greitz T, Stone Elander S, Dahlbom M, Rosenqvist G, Afframpe P, von Euler C (1994) Methodological aspects of brain activation studies: cerebral blood flow determined with [15O]butanol and positron emission tomography. J Cereb Blood Flow Metab 14:628–638.CrossRefGoogle Scholar
  60. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267.ADSCrossRefGoogle Scholar
  61. Jobsis FF, Keizer JH, LaManna JC, Rosenthal M (1977) App Physiol Respir Environ Exercise Physiol 43:858–872.Google Scholar
  62. Kato T, Kamei A, Takashima S, Ozaki T (1993) Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J Cereb Blood Flow Metab 13:516–520.CrossRefGoogle Scholar
  63. Kawashima R, Roland PE, O’Sullivan BT (1994) Fields in human motor areas involved in preparation for reaching, actual reaching, and visuomotor learning: a positron emission tomography study. J Neurosci 14:3462–3474.Google Scholar
  64. Kent TA, Quast MJ, Kaplan BJ, Lifsey RS, Eisenberg HM (1990) Assessment of a superparamagnetic iron oxide (AMI-25) as a brain contrast agent. Magn Reson Med 13:434–443.CrossRefGoogle Scholar
  65. Kety SS (1951) The theory and application of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41.Google Scholar
  66. Kety SS (1960) Measurement of local blood flow by the exchange of an inert, diffusible substance. Methods Med Res 8:228–236.Google Scholar
  67. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clinical Investigation 27:476–483.CrossRefGoogle Scholar
  68. Kim SG, Ashe J, Georgopoulos AP, Merkle H, Ellermann JM, Menon RS, Ogawa S, Ugurbil K (1993) Functional imaging of human motor cortex at high magnetic field. J Neurophysiol 69:297–302.Google Scholar
  69. Kim SG, Ugurbil K, Strick PL (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265:949–951.ADSCrossRefGoogle Scholar
  70. Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996). Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow, in press.Google Scholar
  71. Koeppe RA, Holden JE, Ip WR (1985) Performance comparison of parameter estimation techniques for the quanti-tation of local cerebral blood flow by dynamic positron computed tomography. J Cereb Blood Flow Metab 5:224–234.CrossRefGoogle Scholar
  72. Koeppe RA, Hutchins GD, Rothley JM, Hichwa RD (1987) Examination of assumptions for local cerebral blood flow studies in PET. J Nucl Med 28:1695–1703.Google Scholar
  73. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679.ADSCrossRefGoogle Scholar
  74. Kwong KK, Hopkins AL, Belliveau JW, Chesler DA, Porkka LM, McKinstry RC, Finelli DA, Hunter GJ, Moore JB, Barr RG, et al (1991) Proton NMR imaging of cerebral blood flow using H2(17)O. Magn Reson Med 22:154–158.CrossRefGoogle Scholar
  75. Lai S, Hopkins AL, Haacke EM, Li D, Wasserman BA, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R (1993) Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results. Magn Reson Med 30:387–392.CrossRefGoogle Scholar
  76. LaManna JC, Sick TJ, Pikarsky SM, Rosenthal M (1987) Detection of an oxidizable fraction of cytochrome oxidase in intact rat brain. Am J Physiol 253:C477–C483.Google Scholar
  77. Landau WM, Freygang WH, Rowland LP, et al. (1955) The local circulation of the living brain; values in the unanesthetized and anesthetized cat. Trans Am Neurol Assoc 80:125–129.Google Scholar
  78. Lang W, Lang M, Podreka I, Steiner M, Uhl F, Suess E, Muller C, Deecke L (1988) DC-potential shifts and regional cerebral blood flow reveal frontal cortex involvement in human visuomotor learning. Exp Brain Res 71:353–364.Google Scholar
  79. Lang W, Podreka I, Suess E, Muller C, Zeitlhofer J, Deecke L (1988) Single photon emission computerized tomography during and between seizures. J Neurol 235:277–284.CrossRefGoogle Scholar
  80. Lassen NA (1984) Cerebral transit of an intravascular tracer may allow measurement of regional blood volume but not regional blood flow [letter]. J Cereb Blood Flow Metab 4:633–634.CrossRefGoogle Scholar
  81. Le Scao Y, Robier A, Baulieu JL, Beutter P, Pourcelot L (1992) Cortical perfusion response to an electrical stimulation of the auditory nerve in profoundly deaf patients: study with technetium-99m hexamethylpropylene amine oxime single photon emission tomography. Eur J Nucl Med 19:283–286.Google Scholar
  82. Liu G, Sobering G, Duyn J, Moonen CT (1993) A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magn Reson Med 30:764–768.CrossRefGoogle Scholar
  83. Majumdar S, Zoghbi SS, Gore JC (1988) Regional differences in rat brain displayed by fast MRI with superparam-agnetic contrast agents. Magn Reson Imaging 6:611–615.CrossRefGoogle Scholar
  84. Masino SA, Kwon MC, Dory Y, Frostig RD (1993) Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc Natl Acad Sci U S A 90:9998–10002.ADSCrossRefGoogle Scholar
  85. Mazziotta JC, Huang SC, Phelps ME, Carson RE, MacDonald NS, Mahoney K (1985) A noninvasive positron computed tomography technique using oxygen-15-labeled water for the evaluation of neurobehavioral task batteries. J Cereb Blood Flow Metab 5:70–78.CrossRefGoogle Scholar
  86. McCarthy G, Blamire AM, Rothman DL, Gruetter R, Shulman RG (1993) Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proc Natl Acad Sci U S A 90:4952–4956.ADSCrossRefGoogle Scholar
  87. McLaughlin T, Steinberg B, Christensen B, Law I, Parving A, Friberg L (1992) Potential language and attentional networks revealed through factor analysis of rCBF data measured with SPECT. J Cereb Blood Flow Metab 12:535–545.CrossRefGoogle Scholar
  88. Meier P, Zierler KL (1954) J Appl Physiol 6:731.Google Scholar
  89. Menon RS, Ogawa S, Tank DW, Ugurbil K (1993) Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med 30:380–386.CrossRefGoogle Scholar
  90. Moerlein SM, Gaehle GG, Lechner KR, Bera RK, Welch MJ (1993) Automated production of oxygen-15 labeled butanol for PET measurement of regional cerebral blood flow. Appl Radiat Isot 44:1213–1218.CrossRefGoogle Scholar
  91. Moonen CT, Barrios FA, Zigun JR, Gillen J, Liu G, Sobering G, Sexton R, Woo J, Frank J, Weinberger DR (1994) Functional brain MR imaging based on bolus tracking with a fast T2*-sensitized gradient-echo method. Magn Reson Imaging 12:379–385.CrossRefGoogle Scholar
  92. Moseley ME, Vexler Z, Asgari HS, Mintorovitch J, Derugin N, Rocklage S, Kucharczyk J (1991) Comparison of Gd-and Dy-chelates for T2 contrast-enhanced imaging. Magn Reson Med 22:259–264.CrossRefGoogle Scholar
  93. Narayan SM, Santori EM, Toga AW (1994) Mapping functional activity in rodent cortex using optical intrinsic signals. Cereb Cortex 4:195–204.CrossRefGoogle Scholar
  94. Norris DG, Hoehn Berlage M, Wittlich F, Back T, Leibfritz D (1993) Dynamic imaging with T2* contrast using UFLARE. Magn Reson Imaging 11:921–924.CrossRefGoogle Scholar
  95. O’Leary DS, Madsen MT, Hurtig R, Kirchner PT, Rezai K, Rogers M, Andreasen NC (1993) Dual isotope brain SPECT imaging for monitoring cognitive activation: initial studies in humans. Nucl Med Commun 14:397–404.CrossRefGoogle Scholar
  96. Obrig H, Brandt S, Meyer BU, Borasio GD, Dirnagl U, Villringer A (1994) Vibratory, motor, and transcranial magnetic stimulation in humans produce a localized change in cerebral oxygenation demonstrated with near infrared spectroscopy. Soc Neurosci Abst 20:2:1397(Abstract).Google Scholar
  97. Obrig H, Kleinschmidt A, Merboldt KD, Dirnagl U, Frahm J, Villringer A (1994) Monitoring of cerebral blood oxygenation during human brain activation by simultaneous high-resolution MRI and near-infrared spectroscopy. Proc Soc Magn Reson 1:67(Abstract).Google Scholar
  98. Ogawa S, Lee TM, Barrere B (1993) The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 29:205–210.CrossRefGoogle Scholar
  99. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872.ADSCrossRefGoogle Scholar
  100. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955.ADSCrossRefGoogle Scholar
  101. Pantano P, Di Piero V, Ricci M, Fieschi C, Bozzao L, Lenzi GL (1992) Motor stimulation response by technetium-99m hexamethylpropylene amine oxime split-dose method and single photon emission tomography. Eur J Nucl Med 19:939–945.CrossRefGoogle Scholar
  102. Pekar J, Ligeti L, Ruttner Z, Lyon RC, Sinnwell TM, van Gelderen P, Fiat D, Moonen CT, McLaughlin AC (1991) In vivo measurement of cerebral oxygen consumption and blood flow using 170 magnetic resonance imaging. Magn Reson Med 21:313–319.CrossRefGoogle Scholar
  103. Pekar J, Ligeti L, Sinnwell T, Moonen CT, Frank JA, McLaughlin AC (1994) 19F magnetic resonance imaging of cerebral blood flow with 0.4-cc resolution. J Cereb Blood Flow Metab 14:656–663.CrossRefGoogle Scholar
  104. Raichle ME (1979) Quantitative in vivo autoradiography with positron emission tomography. Brain Res 180:47–68.Google Scholar
  105. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 24:790–798.Google Scholar
  106. Reiman EM, Raichle ME, Robins E, Butler FK, Herscovitch P, Fox P, Perlmutter J (1986) The application of positron emission tomography to the study of panic disorder. Am J Psychiatry 143:469–477.Google Scholar
  107. Rezai K, Andreasen NC, Alliger R, Cohen G, Swayze V, O’Leary DS (1993) The neuropsychology of the prefrontal cortex. Arch Neurol 50:636–642.CrossRefGoogle Scholar
  108. Roberts DA, Detre JA, Bolinger L, Insko EK, Leigh JSJ (1994) Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water. Proc Natl Acad Sci U S A 91:33–37.ADSCrossRefGoogle Scholar
  109. Rosen BR, Belliveau JW, Aronen HJ, Kennedy D, Buchbinder BR, Fischman A, Gruber M, Glas J, Weisskoff RM, Cohen MS, et al (1991) Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 22:293–299.CrossRefGoogle Scholar
  110. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265.CrossRefGoogle Scholar
  111. Ryding E, Decety J, Sjoholm H, Stenberg G, Ingvar DH (1993) Motor imagery activates the cerebellum regionally. A SPECT rCBF study with 99mTc-HMPAO. Brain Res Cogn Brain Res 1:94–99.CrossRefGoogle Scholar
  112. Schadel A (1988) Spect-studies of the brain with stimulation of the auditory cortex. Scand Audiol Suppl 30:177–180.Google Scholar
  113. Sergent J, Zuck E, Levesque M, MacDonald B (1992) Positron emission tomography study of letter and object processing: empirical findings and methodological considerations. Cereb Cortex 2:68–80.CrossRefGoogle Scholar
  114. Shinohara Y, Takagi S, Shinohara N, Kawaguchi F, Itoh Y, Yamashita Y, Maki A (1993) Optical CT imaging of hemoglobin oxygen-saturation using dual-wavelength time gate technique. Adv Exp Med Biol 333:43–46.CrossRefGoogle Scholar
  115. Silbersweig DA, Stern E, Schnorr L, Frith CD, Ashburner J, Cahill C, Frackowiak RS, Jones T (1994) Imaging transient, randomly occurring neuropsychological events in single subjects with positron emission tomography: an event-related count rate correlational analysis. J Cereb Blood Flow Metab 14:771–782.CrossRefGoogle Scholar
  116. Squire LR, Ojemann JG, Miezin FM, Petersen SE, Videen TO, Raichle ME (1992) Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proc Natl Acad Sci U S A 89:1837–1841.ADSCrossRefGoogle Scholar
  117. Stewart GN (1894) J Physiol (London) 15:1.Google Scholar
  118. Talbot JD, Marrett S, Evans AC, Meyer E, Bushneil MC, Duncan GH (1991) Multiple representations of pain in human cerebral cortex [see comments]. Science 251:1355–1358.ADSCrossRefGoogle Scholar
  119. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270.CrossRefGoogle Scholar
  120. Ts’o DY, Frostig RD, Lieke EE, Grinvald A (1990) Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249:417–420.ADSCrossRefGoogle Scholar
  121. Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177:407–414.Google Scholar
  122. Turner R, von Kienlin M, Moonen CT, van Zijl PC (1990) Single-shot localized echo-planar imaging (STEAM-EPI) at 4.7 tesla. Magn Reson Med 14:401–408.CrossRefGoogle Scholar
  123. Turner RJ, Matsoukas JM, Moore GJ (1990) Tyrosinate fluorescence lifetimes for oxytocin and vasopressin in receptor-simulating environments: relationship to biological activity and 1H-NMR data. Biochem Biophys Res Commun 171:996–1001.CrossRefGoogle Scholar
  124. Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U (1993) Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 154:101–104.CrossRefGoogle Scholar
  125. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174.CrossRefGoogle Scholar
  126. Walker Batson D, Wendt JS, Devous MDS, Barton MM, Bonte FJ (1988) A long-term follow-up case study of crossed aphasia assessed by single-photon emission tomography (SPECT), language, and neuropsychological testing. Brain Lang 33:311–322.CrossRefGoogle Scholar
  127. Weisskoff RM, Chesler D, Boxerman JL, Rosen BR (1993) Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?. Magn Reson Med 29:553–558.CrossRefGoogle Scholar
  128. Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610.CrossRefGoogle Scholar
  129. Wenzel R, Obrig H, Rubens J, Villringer K, Hirth Ch, Dirnagl U, Villringer A (1996), J. Biomedical Optics, accepted for publication.Google Scholar
  130. White DL, Aicher KP, Tzika AA, Kucharczyk J, Engelstad BL, Moseley ME (1992) Iron-dextran as a magnetic susceptibility contrast agent: flow-related contrast effects in the T2-weighted spin-echo MRI of normal rat and cat brain. Magn Reson Med 24:14–28.CrossRefGoogle Scholar
  131. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water [published erratum appears in Proc Natl Acad Sci U S A 1992 May l;89(9):4220].ADSCrossRefGoogle Scholar
  132. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water Proc Natl Acad Sci U S A 89:212–216.ADSCrossRefGoogle Scholar
  133. Wittlich F, Kohno K, Mies G, Norris DG, Hoehn Berlage M (1995) Quantitative measurement of regional blood flow with gadolinium diethylenetriaminepentaacetate bolus track NMR imaging in cerebral infarcts in rats: validation with the iodo[14C]antipyrine technique. Proc Natl Acad Sci U S A 92:1846–1850.ADSCrossRefGoogle Scholar
  134. Yonas H, Sekhar L, Johnson DW, and Gur D (1989). Determination of irreversible ischemia by xenon-enhanced computed tomographic monitoring of cerebral blood flow in patients with symptomatic vasospasm. Neurosurgery 24:368–372.CrossRefGoogle Scholar
  135. Zatorre RJ, Evans AC, Meyer E, Gjedde A (1992) Lateralization of phonetic and pitch discrimination in speech processing. Science 256:846–849.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Arno Villringer
    • 1
  1. 1.Neurologische Klinik und PoliklinikMedizinische Fakultät (Charité) der Humboldt Universität zu BerlinBerlinGermany

Personalised recommendations