Advertisement

Macrophage Protection by Nucleoside and Nucleotide Analogue Administration

  • L. Rossi
  • A. Casabianca
  • A. Fraternale
  • G. F. Schiavano
  • G. Brandi
  • A. Antonelli
  • M. Magnani

Abstract

Cells of the monocyte/macrophage lineage are currently recognized as important targets and reservoirs of human immunodeficiency virus (HIV-1) infection (1, 2). Therefore antiviral strategies, effective in inhibiting virus replication and in preventing transfer of HIV from already infected macrophages to target lymphocytes, must be devised. To date, the most successful anti-HIV therapies are based on compounds that interfere with reverse transcriptase, the viral enzyme required for HIV replication (3). Among these are several dideoxynucleosides, including azidothymidine (AZT), 2′,3′-dideoxycytidine (ddCyd) and 2′,3′-dideoxyinosine (ddI) etc. Each of these compounds is phosphorylated to the active triphosphate form after entring the cell and then acts as a DNA chain terminator and/or a competitor by blocking the incorporation of the respective normal deoxynucleoside-5′-triphosphate (4). The phosphorylation depends on specific cellular kinases whose levels in turn depend on the activation state of the target cells and on the cell types (5). Usually, quiescent cells have low levels of the enzymes responsible for nucleoside analogue phosphorylation, while activation (e.g., mitogen stimulation) results in increased activity levels. Because resting macrophages possess low levels of these kinases, a low efficacy of dideoxynucleoside analogues administration is thought.

Keywords

Human Immunodeficiency Virus Acquire Immune Deficiency Syndrome Nucleoside Analogue Murine Macrophage Human Macrophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levy, J.A., Shimabukuro, J., McHugh, T., Casavant, C, Stites, D., Oshiro, L. (1985). AIDS associated retroviruses (ARV) can productively infected other cells besides human T helper cells. Virology 147, 441–447.PubMedCrossRefGoogle Scholar
  2. 2.
    Ho, D.D., Rota, T.R., Hirsch, M.S. (1986). Infection of monocyte/macrophages by human T lymphocyte virus type III. J. Clin. Invest. 77, 1712–1715.PubMedCrossRefGoogle Scholar
  3. 3.
    Hirsch, M.S. and D’Aquila, R.T. (1993). Therapy for human immunodeficiency virus infection. N. Engl. J. Med. 328, 1686–1695.PubMedCrossRefGoogle Scholar
  4. 4.
    DeClerq, E. (1991). Basic approaches to antiretroviral treatment. J. AIDS 4, 207–218.Google Scholar
  5. 5.
    Gao, W. Agbaria, R., Driscoll, J.S. and Mitsuya, H. (1994). Divergent anti-human immunodeficiency virus activity and anabolic phosphorylation of 2′,3′-dideoxynucleoside analogs in resting and activated human cells. J. Biol. Chem. 269, 12633–12638.PubMedGoogle Scholar
  6. 6.
    Perno, C, Yarchoan, R., Cooney, D.A., Hartman, N.R., Gartner, S., Popovic, M., Hao, Z., Garrard, T.L., Wilson, Y.A., Johns, D.G. and Broder, S. (1988). Inhibition of human immunodeficiency virus (HIV-1/HTLV-III BA-L) replication in fresh and cultured human peripheral blood monocyte/macrophages by azidothymidine and related 2′,3′-dideoxynucleosides. J. Exp. Med. 168, 1111–1125.PubMedCrossRefGoogle Scholar
  7. 7.
    Magnani, M., Rossi, L., Brandi G., Schiavano, G.F., Montroni, M. and Piedimonte, G. (1992). Targeting antiretroviral nucleoside analogues in phosphorylated form to macrophages: in vitro and in vivo studies. Proc. Natl. Acad. Sci. U.S.A. 89, 6477–6481.PubMedCrossRefGoogle Scholar
  8. 8.
    Magnani, M., Rossi, L., Fraternale, A., Silvotti, L., Quintavalla, F., Piedimonte, G., Matteucci, D., Baldinotti, F. and Bendinelli, M. (1994). Feline immunodeficiency virus infection of macrophages: in vitro and in vivo inhibition by dideoxycytidine-5′-triphosphate-loaded erythrocytes. AIDS Res. Hum. Retrovirus 10 (9), 1179–1186.CrossRefGoogle Scholar
  9. 9.
    Chattopadhyay, S.K., Sengupta, D.N., Fredrickson, T.N., Morse III, H.C. and Hartley, J.L. (1991). Characteristic and contributions of defective, ecotropic and mink cell focus-inducing viruses involved in a retrovirus induced immunodeficiency syndrome of mice. J. Virol. 65, 4232–4241.PubMedGoogle Scholar
  10. 10.
    Mosier, D.E., Yetter, R.A. and Morse III, H.C. (1987). Functional T lymphocytes are required for a murine retrovirus induced immunodeficiency disease (MAIDS). J. Exp. Med. 165, 1737–1742.PubMedCrossRefGoogle Scholar
  11. 11.
    Matteucci, D., Baldinotti, F., Mazzetti, P., Pistello, M., Bandecchi, P., Ghilarducci, R., Poli, A., Tazzini, F. and Bendinelli, M. (1993). Detection of feline immunodeficiency virus in saliva and plasma by cultivation and polymerase chain reaction. J. Clin. Microbiol. 31, 494–501.PubMedGoogle Scholar
  12. 12.
    Brandi, G., Rossi, L., Schiavano, G.F., Salvaggio, L., Albano, A. and Magnani, M. (1991). In vitro toxicity and metabolism of 2′,3′-dideoxycytidine, an inhibitor of human immunodeficiency virus infectivity. Chem. Biol. Interactions 79, 53–64.CrossRefGoogle Scholar
  13. 13.
    Barrè-Sinoussi, F., Chermann, J.C., Rey, F., Nugeyre, M.T., Chamaret, S., Gruest, J., Dauget, C, Axler-Blin, C, Vezinet, F., Ronzioux, C, Rozenbaum, W. and Montagnier, L. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868–871.PubMedCrossRefGoogle Scholar
  14. 14.
    Rossi, L., Brandi, G., Fraternale, A., Schiavano, G.F., Chiarantini, L. and Magnani, M. (1993). Inhibition of murine retrovirus-induced immunodeficiency disease by dideoxycytidine and dideoxycytidine 5′-triphosphate. J. Acq. Imm. Def. Synd. 6, 1179–1186.Google Scholar
  15. 15.
    Magnani, M., Casabianca, A., Rossi, L., Fraternale, A., Brandi, G., Silvotti, L. and Piedimonte, G. (1995). inhibition of HIV-1 and LP-BM5 replication in macrophages by dideoxycytidine and dideoxycytidine 5′-triphosphate. Antiv. Chem. & Chemother. 6, 312–319.Google Scholar
  16. 16.
    Meltzer, M.S., Skillman, D.R., Gomatos, P.J., Kalter, D.C. and Gendelman, H.E. (1990). Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Ann. Rev. Immunol. 8, 169–194.CrossRefGoogle Scholar
  17. 17.
    Richman, D.D., Komblluth, R.S. and Carson, D.A. (1987). Failure of dideoxynucleosides to inhibit human immunodeficiency virus replication in cultured human macrophages. J. Exp. Med. 166, 1144–1149.PubMedCrossRefGoogle Scholar
  18. 18.
    Gao, W., Cara, A., Gallo, R. and Lori, F. (1993). Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. Proc. Natl. Acad. Sci. U.S.A. 90, 8925–8928.PubMedCrossRefGoogle Scholar
  19. 19.
    North, T.W., Cronn, R.C., Remington, K.M. and Tandberg, R.T. (1990). Direct comparison of inhibitor sensitivities of reverse transcriptases from feline and human immunodeficiency viruses. Antimicrob. Agents Chemother. 34, 1505–1507.PubMedCrossRefGoogle Scholar
  20. 20.
    Rossi, L., Brandi, G., Schiavano, G.F., Chiarantini, L., Albano, A. and Magnani, M. (1992). In vitro and in vivo toxicity of 2′,3′-dideoxycytidine in mice. Chem. Biol. Interactions 85, 255–263.CrossRefGoogle Scholar
  21. 21.
    Chen, C.H. and Cheng, Y.C. (1989), Delayed cytotoxicity and selective loss of mitochondrial DNA in cells treated with the anti-human immunodeficiency virus compound 2′,3′-dideoxycytidine. J. Biol. Chem. 264, 11934–11937.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • L. Rossi
    • 1
  • A. Casabianca
    • 1
  • A. Fraternale
    • 1
  • G. F. Schiavano
    • 2
  • G. Brandi
    • 2
  • A. Antonelli
    • 1
  • M. Magnani
    • 1
  1. 1.Institute of Biological Chemistry “Giorgio Fornaini”University of UrbinoItaly
  2. 2.Institute of HygieneUniversity of UrbinoItaly

Personalised recommendations