Myasthenia Gravis Patients have a Cellular Immune Response against Titin

  • Geir Olve Skeie
  • Johan A. Aarli
  • Roald Matre
  • Alexandra Freiburg
  • Nils Erik Gilhus


Myasthenia gravis (MG) is caused by antibodies against the acetylcholine receptor (AChR). However, some MG patients have antibodies against non-AChR epitopes of skeletal muscle including titin. In this study, we tested peripheral blood lymphocytes from 11 MG patients and 13 blood donors in a lymphocyte transformation test using the antigen MGT-30, a titin epitope that represents the main immunogenic region. Stimulation index (SI) was defined as counts per minute (cpm) in stimulated culture minus background divided by cpm in unstimulated culture minus background. MGT-30 caused a significant stimulation of T-cells from titin-antibody positive MG patients; SI=1.84±0.77, compared with titin-antibody negative patients; SI=0.67±0.28 (p=0.01), and blood-donors; SI=0.65±0.21 (p=0.0005). SI after PHA stimulation was similar in MG patients with and without titin-antibodies and blood-donors. After MGT-30 stimulation, IL-4 concentrations in the supernatant were 84–150pg/mL in all 4 titin-positive patients examined. IL-4 levels were below the detection limit for the ELISA used (60pm/ml) in the cultures from the 8 blood-donors and the 1 titin-negative MG patient that were tested. Thus, MG patients with anti-titin antibodies also have a T-cell mediated immune reactivity against titin.


Stimulation Index Thymic Hyperplasia Lymphocyte Transformation Test Unstimulated Culture Nicotinic Receptor Alpha 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarli JA, Stefansson K, Marton LSG, Wollmann RL. (1990) Patients with myasthenia gravis and thymoma have in their sera IgG autoantibodies against titin. Clin Exp Immunol 82, 284–288PubMedCrossRefGoogle Scholar
  2. Critchfield JM, Racke MK, Zuniga-Pflucker JC, Cannella B, Raine CS, Goverman J, Lenardo MJ. (1994) T cell deletion in high antigen dose theraphy of autoimmune encephalomyelitis. Science 263, 1139–1143.PubMedCrossRefGoogle Scholar
  3. Engel WK, McFarlin DE. (1966) Muscle lesion in myasthenia gravis; discussion. Ann NY Acad Sci 135, 68–77.PubMedCrossRefGoogle Scholar
  4. Gautel M, Lakey A, Barlow PD, Holmes Z, Scales S, Leonard K, Labeit S, Mygland Å, Gilhus NE, Aarli JA. (1993) Titin antibodies in myasthenia gravis: identification of a major immunogenic region of titin. Neurology 43, 1581–1585.PubMedCrossRefGoogle Scholar
  5. Gilhus NE, Willcox N, Harcourt G, Nagvekar N, Beeson D, Vincent A, Newsom-Davis J. (1995) Antigen presentation by thymoma epithelial cells from myasthenia gravis patients to potentially pathogenic T cells. J Neuroimmunol 56, 65–76.PubMedCrossRefGoogle Scholar
  6. Hohlfeld R, Toyka KV, Tzartos SJ, Carson W, Conti-Tronconi BM. (1987) Human T-helper lymphocytes in myasthenia gravis recognize the nicotinic receptor alpha subunit. Proc Natl Acad Sci 84, 5379–5589.PubMedCrossRefGoogle Scholar
  7. Horowitz R, Kempner ES, Bisher ME, Podolsky RJ. (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323, 160–164.CrossRefGoogle Scholar
  8. Kurzban GP, Wang K. (1988) Giant polypeptides of skeletal muscle titin: sedimentation equilibrium in guanidine hydrochloride. Biochem Biophys Res Comm 150, 1155–1161.PubMedCrossRefGoogle Scholar
  9. Labeit S, Kolmerer B. (1995) Titins: giant protins in charge of muscle ultrastructure and elasticity. Science 270, 293–296.PubMedCrossRefGoogle Scholar
  10. LeGrice SFJ, Gruninger-Leitch F. (1990) Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatograpgy. Eur J Biochem 187, 307–314.CrossRefGoogle Scholar
  11. Lindstrom J, Schelton D Fujii Y. (1988) Myasthenia gravis. Adv. Immunol 42, 233–284.PubMedCrossRefGoogle Scholar
  12. Marx A, Osborn M, Tzartos S, Geuder KI, Schalke B, Nix W, Kirchner T, Müller-Hermelink HK. (1992) A striato-nal muscle antigen and myasthenia gravis associated thymomas share an acetylcholine-receptor epitope. Dev Immunol 2, 77–84.PubMedCrossRefGoogle Scholar
  13. Marx A, O’Connor R, Geuder KI, Hoppe F, Schalke B, Tzartos S, Kalies I, Kirchner T, Müller-Hermelink HK. (1990) Characterisation of a protein with an acetylcholine receptor epitope from myasthenia gravis associated thymomas. Lab Invest 62, 279–286.PubMedGoogle Scholar
  14. Mygland Å, Kuwajima G, Mikoshiba K, Tysnes OB, Aarli JA, Gilhus NE. (1995) Thymomas express epitopes shared by the ryanodine receptor. J Neuroimmunol 62, 79–83.PubMedCrossRefGoogle Scholar
  15. Skeie GO, Mygland Å, Aarli JA, Gilhus NE. (1995) Titin antibodies in patients with late-onset myasthenia gravis: clinical correlations. Autoimmunity 20, 99–105.PubMedCrossRefGoogle Scholar
  16. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60–89.PubMedCrossRefGoogle Scholar
  17. Trinick J, Knight P, Whiting A. (1984) Purification and properties of native titin. J Mol Biol 180, 331–356.PubMedCrossRefGoogle Scholar
  18. Wang K. (1984) Cytoskeletal matrix in striational muscle: the role of titin, nebulin and intermediate filaments. Adv Exp Med Biol 170, 285–305.PubMedCrossRefGoogle Scholar
  19. Willcox N. (1993) Myasthenia gravis. Curr Opin Immunol 5, 910–917.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Geir Olve Skeie
    • 1
  • Johan A. Aarli
    • 1
  • Roald Matre
    • 2
  • Alexandra Freiburg
    • 3
  • Nils Erik Gilhus
    • 1
  1. 1.Department of NeurologyUniversity of BergenBergenNorway
  2. 2.Department of ImmunologyUniversity of BergenBergenNorway
  3. 3.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations